• Title/Summary/Keyword: Land side

Search Result 305, Processing Time 0.025 seconds

Different Climate Regimes Over the Coastal Regions of the Eastern Antarctic Ice Sheet

  • Cunde, Xiao;Dahe, Qin;Zhongqin, Li;Jiawen, Ren;Allison, Ian
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • For ten firn cores, from both the eastern and the western side of Lambert Glacier basin (LGB), snow accumulation rate and isotopic temperature were measured far the recent 50 years. Results show that snow accumulation for five cores over the eastern side of LGB (GC30, GD03, GD15, DT001, and DT085) at Wilks Land and Princess Elizabeth Land increases, whereas it decreases at the western side (Core E, DML05, W200, LGB 16, and MGA) at Dronning Maud Land, Mizuho Plateau and Kamp Land. For the past decades, the increasing rate was $0.34-2.36kg\;m^{-2}a^{-1}$ at the eastern side and the decreasing rate was $-0.01\;-\;-2.36kg\;m^{-2}\;a^{-1}$ at the western side. Temperatures at the eastern LGB were also increased with the rate of $0.02%o\;a^{-l}$. At the western LGB it was difficult to see clear trends, which were confirmed by Instrumental temperature records at coastal stations. Although statistic analysis and modeling results display that both surface temperature and accumulation rate has increased trends in Antarctic ice sheet during 1950-2000, the regional distributions were much more different for different geographic areas. We believe that ice-core records at Wilks Land and Princess Elizabeth Land reflect the real variations of SST and moisture change in the southern India Ocean. For the Kamp Land and Dronning Maud Land, however circulation pattern was different, by which the climate was more complicated. The International Trans-Antarctic Scientific Expedition (ITASE) aimed to reveal an overall spatial pattern of climate change over Antarctic ice sheet for the past 200 years. This study points the importance of continental to regional circulation to annual-decadal scale climate change in Antarctica.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

The Changes of Adjacent Residential Area after the Restoration of Covered Urban Streams (도시복개하천의 복원사업 이후 인접 주거지의 물리적 특성 변화)

  • Kim, Jun-Yeong;Yang, Woo-Hyun
    • Journal of the Korean housing association
    • /
    • v.25 no.6
    • /
    • pp.133-146
    • /
    • 2014
  • This study aims to analyze the changes of adjacent residential area after the restoration of covered urban streams in seoul. The changes of adjacent residential area after restoration were analyzed by changes of land using, urban structure, individual lot of land and architecture to investigate relationship of the urban stream and residential change. The result as follows: the first one is the change of land use and urban structure in adjacent residential area. This change of infrastructure through stream restoration has transformed land use and urban structure in adjacent residential area. Secondly, there is the changes of the individual lot of land. It seemed that new development by combined lots would be concentrated in stream-side blocks. But, the changes of lots such as combining or dividing lots tend to be concentrated in stream-side, main road and main streets. In stream-side, commercial function of land use has changed to residential one which has restored streams landscape by transformation of lots use without changes of ownership-lots. Finally, there is the change of architecture. It turned out new building in adjacent residential area is similar to general development. However, new building in streamside is related to direction of stream. In addition, remodeling and expansion tend to change in commercial buildings on stream-side bridges of corner lots intensively. As a result, it is related to expectation of architectural activation and improvement of sidewalk environment by stream restoration.

An Empirical Study on Urban Land Use Changing Patterns with the Rapid Urban Expansion (급속한 도시팽창과정에서 도시토지이용변동의 실증적 연구)

  • 김지열;강병기
    • Journal of the Korean Regional Science Association
    • /
    • v.8 no.1
    • /
    • pp.31-50
    • /
    • 1992
  • The aim of this paper is to define major factors influencing land development of each of major uses (residential, commercial, industrial) in the process of rapid urban expansion. The main hypothesis of this study is that land use changing patterns are directed by supply side of land managed to public policies rather than demand side. The graphic analysis is applied to relationships between urban growth and land development process of each use and between land development project managed to public policies and land development process. Public and land development projects and zonning protection seem to be major roles of land supply and main determinants of urban spatial structure. Location factors for land development of each uses are selected in 23 variables. Factor analysis is applied to test correlation between variables in 1971 and 1981. Factor structure between two years is similar, but progressive processing of functional separation is derived such as intensive land use is grouped, different location between residential and industrial use is deep. Dependent variables are standardized to logarithm of land development of each use per unit vacant land in two periods, between 1971 and 1980 year and between 1981 year. Correlation analysis between 6 dependent variables and 23 location factors in each years are applied. Major factors of each use are selected in criteria such as high correlation with dependent variables, low correlation between independent variables and common application in two periods. As the result, major factors for residential land development are Land Readjustment Project (LRP), percent of total zoned area in residential zone, residential floor space density per available area, percent of total area in industrial use; for commercial development is distance to CBD, percent of total area in commercial use, residential floor space density per available area in each year, and volumn rate of industrial use; for industrial use is percent of total area of industrial use is percent of total area of industrial use, Industrial Estate Project (IES), LRP, and distance from CBD. Land development pattern of each use between two periods are slightly different. So 6 equation is derived from appling backward method of regession. Adjusted multiple R squares of all is more than 0.5 and those equation is statistically significant and valuable to assist urban land use forecasting.

  • PDF

A Legal Study on the Countermeasures against Explosive Terrorism in the Airport Land-side: Case of Korea Airport (공항 Land-side에서의 폭발물 테러방지를 위한 법률적 연구: 한국공항을 중심으로)

  • Jeong Jin-Man;Shin Dong-Il
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.407-411
    • /
    • 2022
  • 공항 시설에서 통틀어 보안이 가장 취약한 곳은 Landside이다. 항공기 테러가 빈번하던 시절에는 X-ray를 비롯한 검색기술의 수준이 높지 않았던 탓에 Hijacking이나 폭발물에 의한 피해가 많았었다. 물론 기술이 발전한 현대에 와서도 Hijacking이나 항공기 폭파 같은 테러가 발생하고 있지만 9.11테러 이전보다는 훨씬 감소한 상황이다. 최근에는 보안수준이 높은 Airside 보다 상대적으로 보안이 취약한 Landside에 대한 보안 강화가 필요하다. 그 이유는 테러의 유형이 협상의 여지가 없는 최대피해와 최대공포를 주는 방식으로 변화하고 있기 때문이다. 따라서 상대적으로 부담이 덜하고 유동인구가 많은 Landside가 Soft Target이 되었다. 이런 상황에서 대한민국 공항이 어떻게 대응해야 하는지 관련된 법을 중심으로 본 연구를 진행해 보고자 한다.

  • PDF

Land Use Strategy of the Station Area (철도역구내의 유휴부지 활용방안 연구)

  • Kim, Hyun-Woong;Kim, Hyun-Kee
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.372-375
    • /
    • 2003
  • Rail station premise's unused land speaks unused space long period among that is station porter underwear space. Also, will may see that two is also unused land if is operated as inefficient occupying a lot of spaces unnecessarily. These space have used by profit making business and station development putting first past. But, necessity of more active business effort is brought ill efficiency side of land. Unused land's efficient practical use is method that can increase railroad property. Therefore, in this study, define shortly about composition of reciprocal space, and presents unused land's practical use plan in station.

  • PDF

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

A Study on the Methodology of Land-Consolidation Sloping Paddies in land Vallry for the Farm-Mechanization (II) (기계화를 전제로 한 산간경사지답경지정리방안에 관한 연구(II))

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.57-68
    • /
    • 1982
  • The paddy fiels slope located in Kangweon province Hwyongsung gun Gonggeun myon Shinchonri was considerably steep and so it was impossible to economically consolidate the field up to date. But for the porpose of farm mechanization, the field (32. 27ha) was consolidated by the auther under the assitance of the Ministry of Agriculture and Fishery and,;the Administration of Kangweon province. This paddy field consolidation was caused by the treatise on "Land-consolidation methods for farm mechanization in the steep-sloped paddy field", of which the auther is the same. The constrution was carried out from September, 1981 to April, 1982. During the 4esign and construction, some Peculiarities were found and discussed. That is, in design, besides the common condititions for a design, some special conditions were considered and written below; (1) The ranges of field slope in this design were 1/100-1/30. (2) Long sides of the land readjustment blocks must be arranged abreast contour line, and so they make the amount of cutting and banking decreased so as to take the maximum advantage of the configuration of the field. (3) In design, the main principles of dividing blocks were written below; i) First of all, long side of a block should be drawn straight abreast a contour line. ii) Long side of a block should arrange abreast contour line and make its length 100-150m, if not, l)reak the side in order to make a bended rectangle. iii) Length of a short side should be determinded within differences of elevation (0.6 -1. 2m) between the two adjacent blocks toward the normal to a contour line. iv) Length of a short side should be above 15m and the ratio of long and short side should be slso kept 1: (4-6). v) A new field surface leveling was determinded from the elevation which produce the least amount of cuttingand banking within the range of 0.6-1. 2m diffe rences of elevation between the two adjacent blocks. vi) In the course of dividing blocks with the same width along the line which was normal to a contour line, all blocks connot keep their shape in a retangle because of steep slope of the field and so on, and so it was also necessory to make some non-retanglar and small blocks such as a trianglar or trapezoidal shape, which was impossible to use some of farm machinery. But because this non-rectanglar and small blocks were divided, larger and many rectanglar blocks can be divided and construction cost can also be lowered. According to the conditions discussed above, the paddy field consolidation project designed and constructed. And the results of this study were obtained as below; (1) Three-forth of total cost of this paddy field consolidation was not construction cost, and these cost consist of land grading (1/4), road and canal construction cost (1/4) and the other cost (1/4) such as surveying or materials and 56 on. (2) The steeper the land slope, the greater cost was assigned for road and canal construction, and than land grading. (3) Curtailment of the road and canal construction cost depended on simplificating their strutures. (4) In the case of the land slopes were low, the land grading cost was high by 1: 1.4 in comparison with the road and canal construction cost, and conversely when the slops were steep, the road and canal construction cost was high by 1 : 5 in compa- rison with the land grading cost. (5) The densities of irrigation canal, drainage canal and trunk and branch road were 150. Sm/ha, 60. im/ha and 17. 4m/ha respectively. The density of irrigation canal of the area was high by 2 times in comparison with the average one of Kangweon Province, and the others were nearly the same. (6) Most farmers (above 85%) knew the effects of paddy field consolidation. The effects are; 1) Improvement of irrigation 2) Improvement of farm management 3) Improvement of transportarion 4) farm mechanization and 5) grouping of the scattered land. And the more farm modernization was accomplished by these projects, the more farmers wanted to live in their land. (7) In spite of the very steep sloped paddy field, the diminution rate of the net farm land caused by consolidation was 7.7% which was nearly the same as the one of Chulweon plain of Kangweon province. Land grading cost was 971, OOOwon/ha which was rather cheap by 13.2% than the one of Ghulweon plain, and unit construction cost was 5, 341, OOOwon/ha (included soil addition) which was also nearly the same as the one of Chulweon plain and FNFIA (The federation of national farmland improvement association).

  • PDF

Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas (경사지 경지정리지구의 등고선 구획 최적설계)

  • 강민구;박승우;강문성;김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.