• Title/Summary/Keyword: Land monitoring

Search Result 918, Processing Time 0.028 seconds

Basic Research on Mid-to-Long-term Management Plan of Purchased Land by Evaluating Ecological Function of Waterfront Area of Geum River (금강수계 수변구역의 생태 기능 평가를 통한 매수토지 중장기 관리 방안 기초 연구)

  • Seo, Jung-young
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.371-384
    • /
    • 2019
  • The purpose of this study was to propose an efficient management plan for purchased land considering the hydrological, watershed characteristics and ecological functions of the target land and surrounding area based on the result of monitoring the water quality improvement effect obtained by purchasing the land in the watershed area in the Geum river system. For this purpose, this study investigated through literature review, and examined ways to apply them to this research by deriving implications from a comprehensive analysis of previous research cases. After that, the components of assessment were derived to evaluate the ecological function of the purchase land, and the ecological function evaluation model for each land and area was proposed. In order to select purchase and restoration priorities of the land, this study analyzed the ecological status of the purchased land in main watersheds and tributaries using Arc GIS ver 10.1. Through this, a process to select restoration priorities was developed. And this study constructed the integrated management process with proposing a mid - to long - term plan by integrating the purchased land valuation and restoration priority selection process. Based on this process, this study suggested an effective management plan for purchased land through the integrated ecological management system of lands purchased. It can be used systematically in appraisal valuation, land purchase system, restoration project, and follow-up management of land purchase.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes

  • Choi, Seok Keun;Kim, Gu Hyeok;Choi, Jae Wan;Lee, Soung Ki;Choi, Do Yoen;Jung, Sung Heuk;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • In recent years, coastal dune erosion has accelerated as various structures have been developed around the coastal dunes. A land cover map should be developed to identify the characteristics of sand dunes and to monitor the condition of sand dunes. The Korean Ministry of Environment's land cover maps suffer from problems, such as limited classes, target areas, and durations. Thus, this study conducted experiments using RGB and multispectral images based on UAV (Unmanned Aerial Vehicle) over an approximately one-year cycle to create a land cover map of coastal dunes. RF (Random Forest) classifier was used for the analysis in accordance with the experimental region's characteristics. The pixel- and object-based classification results obtained by using RGB and multispectral cameras were evaluated, respectively. The study results showed that object-based classification using multispectral images had the highest accuracy. Our results suggest that constant monitoring of coastal dunes can be performed effectively.

Agricultural Land Use and Groundwater Quality of an Alluvial Watershed in the North Han River Basin (북한강 수계 충적평야 지역 토지이용과 지하수 수질간의 관계)

  • Choi Joong-dae;Ryu Soon-ho
    • KCID journal
    • /
    • v.7 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • The effect of land use of an alluvial watershed in the upper North Han river basin on groundwater quality were investigated. Existing 20 farm wells were selected as monitoring wells representing different land uses of residential, arable(paddy and field),

  • PDF

Application of KOMSAT-2 Imageries for Change Detection of Land use and Land Cover in the West Coasts of the Korean Peninsula (서해연안 토지이용 및 토지피복 변화탐지를 위한 KOMPSAT-2 영상의 활용)

  • Sunwoo, Wooyeon;Kim, Daeun;Kang, Seokkoo;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.141-153
    • /
    • 2016
  • Reliable assessment of Land Use and Land Cover (LULC) changes greatly improves many practical issues in hydrography, socio-geographical research such as the observation of erosion and accretion, coastal monitoring, ecological effects evaluation. Remote sensing imageries can offer the outstanding capability to monitor nature and extent of land and associated changes over time. Nowadays accurate analysis using remote sensing imageries with high spatio-temporal resolution is required for environmental monitoring. This study develops a methodology of mapping and change detection in LULC by using classified Korea Multi-Purpose Satellite-2 (KOMPSAT-2) multispectral imageries at Jeonbuk and Jeonnam provinces including protected tidal flats located in the west coasts of Korean peninsula from 2008 to 2015. The LULC maps generated from unsupervised classification were analyzed and evaluated by post-classification change detection methods. The LULC assessment in Jeonbuk and Jeonnam areas had not showed significant changes over time although developed area was gradually increased only by 1.97% and 4.34% at both areas respectively. Overall, the results of this study quantify the land cover change patterns through pixel based analysis which demonstrate the potential of multispectral KOMPSAT-2 images to provide effective and economical LULC maps in the coastal zone over time. This LULC information would be of great interest to the environmental and policy mangers for the better coastal management and political decisions.

Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect (지표 방사율에 의한 지표온도와 도시열섬효과 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • Because of urban development and changed land cover types, It is very important to acquire pixel unit of land surface temperature(LST) information when the heat island effect(HIE) of regional area are investigated. The brightness temperature observed by satellite is very useful for assessing the pixel unit of LST distributions for the analysis of thermal environment problems of urban areas. Also, satellite land cover data are very useful to our understanding of surface conditions of study areas. In this study, brightness temperature information of Landsat TM thermal channel was analyzed and compared with land cover information of Jeon-ju city. The atmospheric correction of TM thermal channel carried out to explain for compared LST long term monitoring errors. However, simple estimation and evaluation methods to find a physical relationship between LST from satellite images and in-situ data are compared with reference channel emissivity.

A Tablet PC-based Monitoring System for Oceanic Applications

  • Lee, Ji Young;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.253-257
    • /
    • 2013
  • Mobile computers can process large amounts of data at high speeds, and it is feasible and easy to implement a remote monitoring system utilizing mobile computers. Because of their portability and convenience, these computers have been employed in various research areas to develop such monitoring systems. Existing monitoring system is a bit difficult to real time monitoring the scattered offshore facilities. So this paper compensate the existing system by using mobile computers such as a tablet PC-based monitoring system. Also, the scattered offshore facilities can be monitored in real-time through the tablet PC. The developed monitoring system is a fully Internet-based monitoring platform that enables one to monitor and control remote oceanic applications at any time and any place where it is possible to access the Internet. It can be applied to many oceanic applications as well as the unmanned systems and remote monitoring systems on land.

Land Surface Temperature Dynamics in Response to Changes in Land Cover in An-Najaf Province, Iraq

  • Ebtihal Taki, Al-Khakani;Watheq Fahem, Al-janabi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.99-110
    • /
    • 2023
  • Land surface temperature (LST) is a critical environmental indicator affected by land cover (LC) changes. Currently, the most convenient and fastest way to retrieve LST is to use remote sensing images due to their continuous monitoring of the Earth's surface. The work intended to investigate land cover change and temperature response inAn-Najaf province. Landsat multispectral imageries acquired inAugust 1989, 2004, and 2021 were employed to estimate land cover change and LST responses. The findings exhibited an increase in water bodies, built-up areas, plantations, and croplands by 7.78%, 7.27%, 6.98%, 3.24%, and 7.78%, respectively, while bare soil decreased by 25.27% for the period (1989-2021). This indicates a transition from barren lands to different land cover types. The contribution index (CI) was employed to depict how changes in land cover categories altered mean region surface temperatures. The highest LSTs recorded were in bare lands (42.2℃, 44.25℃, and 46.9℃), followed by built-up zones (41.6℃, 43.96℃, and 44.89℃), cropland (30.9℃, 32.96℃, and 34.76℃), plantations (35.4℃, 36.97℃, and 38.92℃), and water bodies (27.3℃, 29.35℃, and 29.68℃) respectively, in 1989, 2004, and 2021. Consequently, these changes resulted in significant variances in LST between different LC types.