• Title/Summary/Keyword: Land Fill Gas

Search Result 14, Processing Time 0.025 seconds

Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation (30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

A Study on Reforming Reaction for Preparation of Synthesis Gas from Land-Fill Gas (매립지가스(LFG)로부터 합성가스 제조를 위한 개질반응 연구)

  • Cho, Wooksang;Yoon, Jungsup;Park, Sunggyu;Mo, Yongki;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas ratio on the amount of LFG components over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Results were obtained through the activity reaction experiments at the temperature of $900^{\circ}C$ and GHSV of 4,000. The results were as following; it has generally shown that methane conversion rate increased with the increase of oxygen and carbon dioxide amounts. Highly methane conversion of 92~93% and syngas ratio of approximately 1.0 were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 360ml/min of water, respectively, under reactor pressure of 15 bar for 50 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

A Study on the Demand Modelling for District Cooling Energy Source (지역냉방 열원의 수요모형에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.11 no.4
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF

Construction of Greenhouse Gas Inventory of Private Industry of Chungcheongbuk-do and Analysis of Greenhouse Gas Mitigation Technology (충청북도 민간 산업체에 대한 온실가스 인벤토리 구축 및 감축기술 분석)

  • Lim, Soo Min;Ahn, Joo Young;Jung, Cho Shi;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Greenhouse gas (GHG) emissions of private industry of Chungcheongbuk-do were estimated. GHG emissions were classified by industry and GHG emissions ratio of each industry of Chungcheongbuk-do was found. Characteristics of GHG emissions of Chungcheongbuk-do and GHG mitigation technology were analyzed. To calculate GHG emissions, equations proposed through GHG emissions calculation guidelines published by Korean Energy Agency in 2009 were used. As a result, GHG emissions ratio of cement, semiconductor, paper and petrochemical industry was about 73%, 16%, 5%, and 2% respectively. GHG mitigation technologies of cement, semiconductor and waste were investigated. For cement, amine technology, for semiconductor, scrubber system and for waste, land fill gas utilization were analyzed.

Reducing technology of fuel-NOx generation using fuel-rich/-lean catalytic combustion (연료(燃料) 과농(過濃)/희박(稀薄) 조절(調節)의 촉매연소(觸媒燃燒)에 의한 Fuel-Nox 저감(低減) 기술(技術))

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Shin, H.D.;Han, H.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • A two-step fuel-rich/fuel-lean catalytic combustion seems to be one of the most effective methods to control simultaneously the NO generation and the hydrocarbon (HC) conversion from fuel-bound nitrogen. By controlling equivalent air ratio for maintaining fuel-rich and fuel-lean condition over each catalytic layer, space velocity, inlet temperature, and catalyst component, the HCand ammonia conversion efficiency higher than 95% could be achieved, with ammonia conversion to NO remaining below 5%. The experimental results wouldbe applied to the combustion of land fill gas and to gasified refuse-derived fuels as a method of minimizing NO generation.

  • PDF

A Study on the Environmental Carrying Capacity Assessment of Chongju City (도시 환경용량평가에 관한 연구 -청주시를 사례로-)

  • Lim, Jae-Ho;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • The purpose of this study is to assess the environmental carrying capacity of Chongju City for the environmental management and the urban growth management. The urban environmental carrying capacity assessment of the city by the index of ecological footprint(EF), shows that the ecosystem of the city has been overloaded and most of the deficiencies has come from outside of the city. The EF index, the area of land per capita required for production and consumption in the city, was 1.731 ha per capita in 1989 and 1.901 ha per capita in 1999. On the other side, the ecologically productive land is 0.0175 ha per capita. It means that every citizen owes 1.88 ha per capita to the ecosystem in 1999. The land consumption of the city has increased by 0.1705 ha per capita during the last 10 years. The capacity of infrastructure and the service supply estimated by the Onishi model does not exceed the demand of the city in 1999. But the rapidly increasing population and fast urban growth need the expansion of the capacity. The water supply capacity of the city appears to be sufficient in 1999, but the water supply demand will increase in the future. The capacity of sewage treatment facilities seems to be sufficient, but the higher level of sewage treatment facilities should be adopted for the improvement of water quality as the generation of sewage will increase and its characteristics will also make the wastewater treatment difficult. Due to the decrease of solid waste generated, the land fill capacity for solid waste disposal is not insufficient at present, but the capacity will be saturated in the near future. Therefore, the scientific management system of solid wastes should be introduced. The air quality of the city meets both the national air quality standard and WHO recommendation standard, but the strong regulation and control of automobile emission gas such as CO, $CO_2$, NOx and HC is required for clean air.

A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas (매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구)

  • CHO, WOOKSANG;CHOI, KEONGDON;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.