• Title/Summary/Keyword: Land Cover Property

Search Result 29, Processing Time 0.026 seconds

IKONOS Stereo Matching with Land Cover Map for DEM Generation

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Guk;Han, Dong-Yeob
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.580-583
    • /
    • 2007
  • Various matching methods have been introduced by investigators to improve digital elevation model (DEM) accuracy of satellite imagery. This study proposed an area-based matching method according to land cover property using correlation coefficient of pixel brightness value between the two images for DEM generation from IKONOS stereo imagery. For this, matching line (where "matching line" implies straight line that is approximated to complex nonlinear epipolar geometry) is established by exterior orientation parameters to minimize search area. The matching is carried out based on this line. Land cover classes are divided off into water, urban land, forest and agricultural land. Matching size is selected using a correlation-coefficient image in the four areas. The selected sizes are $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively. And hence, DEM is generated from IKONOS stereo imagery using the selected matching sizes and land cover map on the four types.

  • PDF

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

Matching Techniques with Land Cover Image for Improving Accuracy of DEM Generation from IKONOS Imagery (IKONOS 영상을 이용한 DEM 추출의 정확도 향상을 위한 토지피복도 활용 정합기법)

  • Lee, Hyo Seong;Park, Byung Uk;Han, Dong Yeob;Ahn, Ki Weon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.153-160
    • /
    • 2009
  • In relation to digital elevation model(DEM) production using high resolution satellite imagery, existing studies present that DEM accuracy differently show according to land cover property. This study therefore proposes auto-selection method of window size for correlation matching according to land cover property of IKONOS Geo-level stereo image. For this, land cover classified image is obtained by IKONOS color image with four bands. In addition, correlation-coefficients are computed at regular intervals in pixels of the window-search area to shorten of matching time. As the results, DEM by the proposed method showed more accurate than DEM using the fixed window-size matching. We estimate that accuracy of the proposed DEM improved more than DEM by digital map and ERDAS in agricultural land.

A Study to Evaluate Impervious Area Ratio by Geographic Information Data (지리정보자료에 따른 불투수면적률 산정 결과에 대한 연구)

  • Min Suh Chae;Kyoung Jae Lim;Joong-Hyuk Min;Minji Park;Jichul Ryu;Mijin Lee;Sohyeon Park;Youn Shik Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2023
  • Infiltration is a process by which precipitation infuses into subsurface soils. The process determines the surface flow and baseflow volume, and it is one of most important hydrological processes regarding nonpoint source pollution management. Therefore, the Ministry of Environment has developed a guideline to determine the impervious area ratio to understand the hydrological process in administrative districts and watersheds. The impervious area ratio can be determined using land use or land cover maps. Three approaches were explored to determine the impervious area ratio in 25 districts in Seoul. The impervious area ratio was determined by employing the Land registration map and Land property data in the first approach, Land property map in the second approach, and Land cover map in the third approach. The ratio ranged from 38.96% to 83.01% in the first approach, 38.98% to 83.02% in the second approach, and 37.62% to 76.63% in the third approach. Although the ranges did not provide any significant differences in the approaches, some districts displayed differences up to 9.48% by the approach. These differences resulted from the fact that the data were land use or land cover, especially in the area of airport, residential complex area, and school sites. In other words, division of the pervious and impervious areas in an individual plot was not allowed in the Land registration map, while it was allowed in the Land cover map. Therefore, it was concluded that there is a need to revise the guideline so that a reasonable impervious area ratio can be determined in the districts.

Relationship assessment among land use and land cover and land surface temperature over downtown and suburban areas in Yangon City, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.353-364
    • /
    • 2016
  • Yangon city is experienced a rapid urban expansion over the last two decades due to accelerate with the socioeconomic development. This research work studied an investigation into the application of the integration of the Remote Sensing (RS) and Geographic Information System (GIS) for observing Land Use and Land Cover (LULC) patterns and evaluate its impact on Land Surface Temperature (LST) of the downtown, suburban 1 and suburban 2 of Yangon city. The main purpose of this paper was to examine and analyze the variation of the spatial distribution property of the LULC of urban spatial information related with the LST and Normalized Difference Vegetation Index (NDVI) using RS and GIS. This paper was observed on image processing of LULC classification, LST and NDVI were extracted from Landsat 8 Operational Land Imager (OLI) image data. Then, LULC pattern was linked with the variation of LST data of the Yangon area for the further connection of the correlation between surface temperature and urban structure. As a result, NDVI values were used to examine the relation between thermal behavior and condition of land cover categories. The spatial distribution of LST has been found mixed pattern and higher LST was located with the scatter pattern, which was related to certain LULC types within downtown, suburban 1 and 2. The result of this paper, LST and NDVI analysis exhibited a strong negative correlation without water bodies for all three portions of Yangon area. The strongest coefficient correlation was found downtown area (-0.8707) and followed suburban 1 (-0.7526) and suburban 2(-0.6923).

Fusion Matching According to Land Cover Property of High Resolution Images (고해상도 위성영상의 토지피복 특성에 따른 혼합정합)

  • Lee, Hyoseong;Park, Byunguk;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.583-590
    • /
    • 2012
  • This study proposes fusion image matching method according to land cover property to generate a detailed DEM using the high resolution IKONOS-2 stereo pair. A classified image, consists of building, crop-land, forest, road and shadow-water, is produced by color image with four bands. Edges and points are also extracted from panchromatic image. Matching is performed by the cross-correlation computing after five classes are automatically selected in a reference image. In each of building class, crop-land class, forest class and road class, matching was performed by the grid and edge, only grid, only grid, grid and point, respectively. Shadow-water class was excepted in the matching because this area causes excessive error of the DEM. As the results, edge line, building and residential area could be expressed more dense than DEM by the conventional method.

Analysis of Polarization Responses According to Different Land Cover Types Using SAR Polarimetry Data

  • Kang M.K.;Yoon W.J.;Kim K.E.;Choi H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.393-396
    • /
    • 2004
  • In this paper, multifrequency, polarimetric SAR data acquired during the first SIR-C/XSAR mission over the Seoul and Gyunggi-do (Korea) test sites are analyzed. The main objective of the study is to assess the possibility of extracting relevant information about surface properties for geophysical applications using polarimetry. This study analyses the characteristics of polarization responses and polarimetric parameters to conditions present in urban, river, agricultural, and forested areas. Results indicate that the dominant scattering property from these fields varies depending on the land cover types. The polarization response graphs and the backscattering coefficients associated with the polarimetric parameters are also useful in characterizing these cover types.

  • PDF

Analysis of Soil Erodibility Potential Depending on Soil and Topographic Condition - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do, South Korea- (토양 및 지형 조건에 따른 토양침식 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park, In-Hwan;Jang, Gab-Sue;Lee, Geun-Sang;Seo, Dong-Jo
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Changes in the soil physical property and the topographic condition derived from agricultural activities like as farming activities, land clearance and cutting down resulted in environmental and economic problems including the outflow of nutrient from farms and the water pollution. Several theories on the soil conservation have been developed and reviewed to protect soil erosion in the regions having a high risk of erosion. This study was done using the USLE model developed by Wischmeier and Smith (1978), and model for the slope length and steepness made by Desmet and Govers (1996), and Nearing (1997) to evaluate the potential of the soil erodibility. Therefore, several results were obtained as follows. First, factors affecting the soil erosion based on the USLE could be extracted to examine the erosion potential in farms. Soil erodibility (K), slope length (L), and slope steepness (S) were used as main factors in the USLE in consideration of the soil, not by the land use or land cover. Second, the soil erodibility increased in paddy soils where it is low in soil content, and the very fine sandy loam exists. Analysis of the slope length showed that the value of a flat ground was 1, and the maximum value was 9.17 appearing on the steep mountain. Soil erodibility showed positive relationship to a slope. Third, the potential soil erodibility index (PSEI) showed that it is high in the PSEI of the areas of steep upland and orchard on the slope of mountainous region around Dokjigol mountain, Dunji mountain, and Deummit mountain. And the PSEI in the same land cover was different depending on the slope rather than on the physical properties in soil. Forth, the analysis of land suitability in soil erosion explained that study area had 3,672.35ha showing the suitable land, 390.88ha for the proper land, and 216.54ha for the unsuitable land. For unsuitable land, 8.71ha and 6.29ha were shown in fallow uplands and single cropping uplands, respectively.

Assessment of Agricultural Environment Using Remote Sensing and GIS

  • Hong Suk Young
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.75-87
    • /
    • 2005
  • Remote sensing(RS)- and geographic information system(GIS)-based information management to measure and assess agri-environment schemes, and to quantify and map environment indicators for nature and land use, climate change, air, water and energy balance, waste and material flow is in high demand because it is very helpful in assisting decision making activities of farmers, government, researchers, and consumers. The versatility and ability of RS and GIS containing huge soil database to assess agricultural environment spatially and temporally at various spatial scales were investigated. Spectral and microwave observations were carried out to characterize crop variables and soil properties. Multiple sources RS data from ground sensors, airborne sensors, and also satellite sensors were collected and analyzed to extract features and land cover/use for soils, crops, and vegetation for support precision agriculture, soil/land suitability, soil property estimation, crop growth estimation, runoff potential estimation, irrigated and the estimation of flooded areas in paddy rice fields. RS and GIS play essential roles in a management and monitoring information system. Biosphere-atmosphere interection should also be further studied to improve synergistic modeling for environment and sustainability in agri-environment schemes.

  • PDF

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF