• Title/Summary/Keyword: Land Cover Change

Search Result 456, Processing Time 0.023 seconds

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

A Study on the Estimation Method of Carbon Storage Using Environmental Spatial Information and InVEST Carbon Model: Focusing on Sejong Special Self-Governing City - Using Ecological and Natural Map, Environmental Conservation Value Assessment Map, and Urban Ecological Map - (환경공간정보와 InVEST Carbon 모형을 활용한 탄소저장량 추정 방법에 관한 연구: 세종시를 중심으로 - 생태·자연도, 국토환경성평가지도, 도시생태현황지도를 대상으로 -)

  • Hwang, Jin-Hoo;Jang, Rae-ik;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.15-27
    • /
    • 2022
  • Climate change is considered a severe global problem closely related to carbon storage. However, recent urbanization and land-use changes reduce carbon stocks in terrestrial ecosystems. Recently, the role of protected areas has been emphasized as a countermeasure to the climate change, and protected areas allow the area to continue to serve as a carbon sink due to legal restrictions. This study attempted to expand the scope of these protected areas to an evaluation-based environmental spatial information theme map. In this study, the area of each grade was compared, and the distribution of land cover for each grade was analyzed using the Ecological and Nature Map, Environmental Conservation Value Assessment Map and Urban Ecological Map of Sejong Special Self-Governing City. Based on this, the average carbon storage for each grade was derived using the InVEST Carbon model. As a result of the analysis, the high-grade area of the environmental spatial information generally showed a wide area of the natural area represented by the forest area, and accordingly, the carbon storage amount was evaluated to be high. However, there are differences in the purpose of production, evaluation items, and evaluation methods between each environmental spatial information, there are differences in area, land cover, and carbon storage. Through this study, environmental spatial information based on the evaluation map can be used for land use management in the carbon aspect, and it is expected that a management plan for each grade suitable for the characteristics of each environmental spatial information is required.

Environmental Change Analysis of Kwangju City using Landsat TM Data (Landsat TM 자료를 이용한 광주시 환경변화 분석)

  • Park, Byung-Uk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.31-41
    • /
    • 1996
  • The analysis of environmental change followed by cultural development is useful for determining development plan hereafter. This study aimed for quantitative analysis about urban sprawl within 10 years, from 1984 to 1994, at Kwangju city, and to extract characteristics of change. For this purpose, we performed land cover classifications using Landsat TM data. And to evaluate influence of urbanization, we carried out surface temperature analysis using TM band 6 data. From the change analysis in land cover, it wa found that expansion of urban areas amounted to 3% and get accomplished by exploitation of farm land area, and that a rice paddy fields were changed to vinyl house areas considerably. In the regional aspect, development was concentrated on Kwangsan-ku which had been incorperated into Kwangju city in 1988. The results from temperature analysis showed that there was close correlation between surface temperature and land cover types, and that urbanization would influnce temperature to rise $0.3^{\circ}C$ in summer. As a results, we can prove that satellite data is very effective for environmental change analysis.

  • PDF

Assessing the Impact of Sampling Intensity on Land Use and Land Cover Estimation Using High-Resolution Aerial Images and Deep Learning Algorithms (고해상도 항공 영상과 딥러닝 알고리즘을 이용한 표본강도에 따른 토지이용 및 토지피복 면적 추정)

  • Yong-Kyu Lee;Woo-Dam Sim;Jung-Soo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.267-279
    • /
    • 2023
  • This research assessed the feasibility of using high-resolution aerial images and deep learning algorithms for estimating the land-use and land-cover areas at the Approach 3 level, as outlined by the Intergovernmental Panel on Climate Change. The results from different sampling densities of high-resolution (51 cm) aerial images were compared with the land-cover map, provided by the Ministry of Environment, and analyzed to estimate the accuracy of the land-use and land-cover areas. Transfer learning was applied to the VGG16 architecture for the deep learning model, and sampling densities of 4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, and 250 × 250 m were used for estimating and evaluating the areas. The overall accuracy and kappa coefficient of the deep learning model were 91.1% and 88.8%, respectively. The F-scores, except for the pasture category, were >90% for all categories, indicating superior accuracy of the model. Chi-square tests of the sampling densities showed no significant difference in the area ratios of the land-cover map provided by the Ministry of Environment among all sampling densities except for 4 × 4 km at a significance level of p = 0.1. As the sampling density increased, the standard error and relative efficiency decreased. The relative standard error decreased to ≤15% for all land-cover categories at 1 × 1 km sampling density. These results indicated that a sampling density more detailed than 1 x 1 km is appropriate for estimating land-cover area at the local level.

Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery (RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가)

  • Woodam Sim;Jong Su Yim;Jung-Soo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.269-282
    • /
    • 2023
  • The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

An Analysis on Spatio-Temporal Changes of Land Cover focusing on NDVI Using GIS and RS in Pyeongbuk Province, Northwest Korea (GIS와 RS를 이용한 토지피복 및 식생 분포의 시ㆍ공간적 변화 - 평안북도 서부 지역을 중심으로 -)

  • 이민부;김남신;최한성;신근하
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.835-848
    • /
    • 2003
  • This study deals with the spatio-temporal change of land cover and vegetation distribution between 1988 and 2001 using remote sensing images and CIS techniques in west area of Pyeongbuk Province, northwest Korea. Landsat TM and ETM images are geometrically and radiometrically corrected for the analysis of land cover and NDVI. Forested areas are decreased during 13 year from 1988 to 2001 in study area including Sakju, Daegwan, Guseong and Euiju of Pyeongbuk Province, because wasteland are increased by human impact and denuded land by landslide and flooding. DEM analysis presents that settlement and cropland are developed toward higher and steeper mountain slope, together with decrease NDIV values. these changes have resulted from unplanned increase of cropland without consideration of geomorphic condition. Therefore, more researches and reasonable policies are required to protect forest and cropland and stable food supply against natural hazard like landslide.

Detection of Land Cover Change Using Landsat Image Data in Desert Area (Landsat 영상자료를 이용한 사막지역의 토지피복 변화 분석)

  • M, Erdenechimeg;Choi, Byoung-Gil;Na, Young-Woo;Kim, Tae-Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2010
  • This study aimed at monitoring, mapping, and assessing the land degradation in the desert area. In this research, the Landsat TM and ETM+ imageries to assess the extent of land degradation for study area during the period from 1991 to 2007. Were used to study supervized, unsupervized classfication and NDVI land cover changes in the desert area in Mongolia. The classified map consists of five classes of water, vegetation, slight desertification, middle desertification and sever desertification. It shows that for determination classfication methods and NDVI, desertification map of the study area are prepared. The result showed accounting for a clear deterioration in vegetative cover, an increase of sever desertification and a decrease in middle desertification and slight desertification respectively of the total study area.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.