• Title/Summary/Keyword: Laminating

Search Result 179, Processing Time 0.027 seconds

A Study on the Chemical Integration between Coating Sheets of Complex Waterproofing Method Using Modified Amine-Treated Nonwoven Fabric (변성아민 처리된 부직포를 이용한 복합방수공법의 도막·시트 간 화학적 일체화에 관한 연구)

  • Kim, Sun-Do;Kim, Jin-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.118-119
    • /
    • 2017
  • The combined waterproofing method is an excellent method to overcome the disadvantages of the single waterproofing method by composing two or more materials to complement each other, but it is a method that can cause defects such as separation and peeling between materials due to the heterogeneity of the applied two materials. In order to improve this, in this study, we aimed to develop a technology for inducing chemical unification between materials through a urea reaction with a coating material applied on the lower side by laminating a nonwoven fabric treated with a modified amine on the back surface of the sheet material, The adhesion performance test was carried out with the presence or absence of denatured amine treated nonwovens as variables. As a result of the test, it was confirmed that the adhesion performance of the specimen to which the modified amin - treated nonwoven fabric was applied was improved by about 60% or more as compared with the specimens not having the denatured amine treated specimen.

  • PDF

Development of the Heat-Resistant Functionally Gradient Material with Metal Substrate (금속기지 내열 경사기능 복합재료 개발에 관한 연구)

  • Kim, Bu-Ahn;Nam, Ki-Woo;Cho, Mun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.62-69
    • /
    • 1999
  • 67Ni-22Cr-10Al-1Y and $ZrO_2-8Y_2O_3$ were coated on the substrate surface of ST304 and Al2024 by the plasma spraying method. The adgesion of the films varies depending on the substrates and the laminating method. In the case of STS304, the cracks were observed at thermal shock temperature difference ${Delta}T$ of $900^{circ}C$ in the non functionally gradient material(NFGM) and at $1100^{circ}C$ in the functionally gradient material(FGM). The film adhesion of the FGM is better than that of the NFGM in ST304. The cumulative AE count of the FGM of STS304 increased continuously at the bending test. But the NFGM of STS304 showed discontinuity of the AE count. The total AE count for the FGM of STS304 decreased as the number of thermal shock increased, and this tendency was evident as the thermal shock temperature difference increased.

  • PDF

Development of Thin and Lightweight Bulletproof Windows Using Strengthened SLS Glass by Ion Exchange

  • Shim, Gyu-In;Kim, Seong-Hwan;Ahn, Deok-Lae;Park, Jong-Kyoo;Choi, Se-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Soda-lime silicate (SLS) glass was strengthened by ion exchange for application of thin and lightweight bulletproof windows. The optimal conditions for ion exchanged SLS glass (thickness of 3 and 10 mm) at $480^{\circ}C$ were 10 and 17 min, respectively. The Vickers hardness values of the strengthened SLS glass samples with thicknesses of 3 and 10 mm were $5.9{\pm}0.22$ and $6.7{\pm}0.17GPa$, respectively, which values were about 22% higher than those of parent SLS glass. By laminating a multilayer defense film and polycarbonate sheet with ion exchanged SLS glass, we were able to make a thin and lightweight bulletproof window (24.25 mm, 4.57 kg, $50.06kg/m^2$, $V_{50}$ 901.8 m/s). As a result, the thickness of the bulletproof window was decreased by about 39% from 40 to 24.25 mm. The light transmittance in the visible range satisfied the standard (over 76%) for bulletproof windows.

Structural Properties of PZT BT Mulitilayered Films (PZT BT 이종 박막의 구조적 특성)

  • Lee, Sang-Heon;Lim, Sung-Soo;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1960-1961
    • /
    • 2005
  • Ploycrystalline $Pb(Zr_{0.5},Ti_{0.5})O_3$ and $BaTiO_3$ powder were prepared by sol-gel process. The alumina substrate were sintered at $1400^{\circ}C$ with bottom electrode of Pt for 2 hours. The Pb(Zr0.5, Ti0.5)O3/BaTiO3 multilayered thick films with laminating times were fabricated on alumina substrate by screening printing method. The obtained thick films were sintered at $800^{\circ}C$ with upper electrode of Ag paste for 1 hour, Structural properties of Pb(Zr0.5,Ti0.5)O3/BaTiO3 multilayered thick films were investigated. As a result of the Differential Thermal Analysis(DTA) of Pb(Zr0.5,Ti0.5)O3, exothermic peak was observed at around $650^{\circ}C$. The X-ray diffraction (XRD) patterns indicated that BaTiO3 and Pb(Zr0.5,Ti0.5)O3 phases and porosities were formed in the interface of Pb(Zr0.5,Ti0.5)O3 / EaTiO3 multilayered thick films.

  • PDF

Electrical properties of conducting polymer PTCR containing carbon powders (탄소분말을 함유한 도전성 고분자 PTCR의 전기적 특성)

  • Kim, Kyung-Jong;Lee, Jae-Won;Kim, Young-Hyeok;Kim, Sung-Hoon;Choi, Mun-Seok;Lee, Jae-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.220-221
    • /
    • 2006
  • We investigated the electrical properties of polymer-carbon composite materials for temperature sensitive resistor applications. Cu/polymer/Cu sheets were fabricated by laminating low density polyethylene(LDPE) containing carbon powders. Weight ratio of carbon powder to LDPE was varied in a range of 0.9~2. With increasing the carbon concentration, the electrical resistance of the composite material was decreased from 0.75 to $0.08\;{\Omega}cm$. The composite layer showed a abrupt increase in the electrical resistance at $115^{\circ}C$ because of the softening of the polymer.

  • PDF

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates (LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구)

  • Hwang, Hyun Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

A Study on Fabrication of Internally Colored Shape in Stereolithography Parts using Molten Ink Deposition Process (용융잉크 적층공정을 이용한 내부채색형상을 포함한 광조형물 제작에 관한 연구)

  • Park, Jong-Cheol;Park, Suk-Hee;Kang, Sang-Il;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.98-104
    • /
    • 2010
  • Rapid Prototypes with internally colored objects are convenient by visualizing. A rapid prototyping method has been developed to fabricate mono-colored or multi-colored objects. In this work, a new process was proposed that can fabricate internally visible colored 3D objects in stereolithography parts. The process consists of projection stereolithography process using transparent photocurable resin for outer shapes and molten ink deposition process using molten solid ink for internal shapes. In molten ink deposition process, molten solid ink could be deposited uniformly in a designed pattern. To make molten solid ink uniform over a designed region, parametric study through a patterning solid ink was performed. By laminating resin and solid ink in sequence, the process can make colored 3D objects in StereoLithography(SL) parts. The practicality and effectiveness of the proposed process were verified through fabrication of colored basic 3D objects in SL parts.

A Study on the Characteristics of Paper-based Packaging Materials with Bioplastics for Roasted Coffee Beans (바이오 플라스틱을 적용한 종이 합지 커피 포장재의 제품 특성에 관한 연구)

  • Yu, Ha Kyoung;Joo, Minjung;Woo, Jung Hee;Oh, Jae Young;Lim, Hyo Seung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • Recent studies on recyclable materials in the packaging have an increased attention due to the eco-friendly policies of reducing carbon dioxide emissions in worldwide. Roasted coffee beans mostly packed in multi-layered films and papers according to their expiration date. To satisfy both recyclability and barrier properties, researches have been continued on paper-based packaging materials to enhance their properties. In this study, packaging materials for coffee beans are developed by laminating bioplastic films on papers. The tests of packaging materials were performed with mechanical properties, gas and water vaper permeability, recyclability and storage quality for coffee beans. Compared to other samples, the paper/bioplastics-based coffee package composed of starch coated papers and two bioplastics showed the lowest barrier properties, comparable mechanical strength and ability to maintain the quality of roasted coffee beans. Thus, it could be a good alternative for multi-layered packages for roasted coffee beans.

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan Song;Haekyoung Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle (초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작)

  • Kang, Lae-Hyong;Jang, Hee-Suk;Leem, Ju-Young;Han, Jae-Hung
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper deals with a fabrication method of composite hinge mechanisms for flapping-wing micro air vehicles. The fabrication process includes curing process of Graphite/Epoxyprepregs, laser cutting for high fabrication repeatability, laminating of Graphite/Epoxy prepregs with Kapton film which is used for flexure, and so on. The fabricated hinge mechanism was attached with PUMPS actuators and the measured flapping angle was $173^{\circ}$ when driving voltage was 300V 170Hz.