• Title/Summary/Keyword: Laminated composite plates

Search Result 396, Processing Time 0.023 seconds

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Analysis of Anisotropic Folded Structures using Triangular and Quadrilateral Elements (3절점 및 4절점 요소를 이용한 비등방성 절판 구조물의 해석)

  • Yoo, Yong-Min;Yhim, Sung-Soon;Chang, Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study deals with displacement analysis of anisotropic folded structures with triangular elements and quadrilateral elements. When folded plates are analyzed, triangular elements as well as quadrilateral elements are needed for conveniences of modelling. However, using triangular elements is not a simple problem. A simple formulation is presented which allows a quadrilateral element to degenerate into a triangular element. Therefore it can easily be used for computational simplicity and avoided complexities on mixed use of triangular element and quadrilateral element. In this paper, a high-order shear deformation theory using only Lagrangian interpolation functions and drilling degrees of freedom for folded plates are utilized for more accurate analysis. Especially, various results of anisotropic laminated and folded composite structures with triangular element and quadrilateral element show the structural behavior characteristics of them.

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part II : Finite Element Formulation and Implementations (복합재료적층판의 진동해석을 위한 유한요소모델 II. 유한요소모델의 유도 및 해석)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.103-111
    • /
    • 1994
  • Based on a variational principle of the consistent shear deformable discrete laminate theory derived in the companion paper Part I, a finite element procedure for the vibration analysis of laminated composite plates is presented. The present formulation takes the in-plane displacements of an arbitrary layer, the rotations of the cross section of each layer and transverse displacement of the plate as the state variables at a nodal point of finite element, resulting in total nodal degree of freedom of 2(n+l) +1 for the n-layered laminate. Thus, it allows to specify displacement boundary conditions of layer stretching and/or rotation of layer cross sections around the plate edge and/or lateral displacement. The developed procedure is applied to the free vibration problem for sandwich-type hybrid laminates composed of layers with drastically different material properties whose elasticity solutions are known. Comparison of analysis results with other FEM solutions showed that the present formulation yields better accuracy.

  • PDF

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact (온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향)

  • Ra Seung-woo;Jung Jong-an;Yang In-young
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

LEFM Analysis of Patch Repaired Steel Plates by p-Version Layer Model (p-Version 적층모델을 통한 팻취 보강된 강판의 선형탄성파괴역학 해석)

  • Han, Sang-Hyun;Shin, Young-Shik;Woo, Kwang-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.487-492
    • /
    • 2007
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchical void element with the integrals of Legend polynomials is used to characterize the fracture behavior of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. The numerical approach is based on the v-version degenerate shell element including the theory of anisotropic laminated composites. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness of materials. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of hierarchical void element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem.

  • PDF

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.

Variation of the Group Velocity of Lamb Wave $S_o$ Mode with the Propagating Direction in the Laminated Unidirectional CFRP Plates (단일방향 탄소섬유복합재료 적층 판에서 전파 방향에 따른 램파 $S_o$ 모드의 군속도의 변화)

  • Kim Young H.;Lee Seung Seok;Kim Ho Chul;Lee Jeong Ki
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In this paper, the group velocity dispersion curves of the $S_o$ symmetric mode in unidirectional CFRP plate was calculated as varying the propagating direction. The group velocity curve was obtained with the group velocities of the $S_o$ symmetric mode corresponding to 0.2 MHz-mm under the first cut-off frequency in the dispersion curves, and corrected by introducing the slowness curve. The velocities of the $S_o$ symmetric mode in the unidirectional CFRP plate were measured as varying the propagating direction and compared with the col?rotted group velocity curve. The measured velocities were good agreement with the corrected group velocity curve except near the fiber direction which was called the cusp region. It implies that the direction of the group velocities incline toward the fiber direction of the unidirectional CFRP plates when the propagation direction is not accorded with the principal axis. It is supposed that this phenomenon rerults from the preferential propagating the energy toward the direction with the faster propagation velocity.