• 제목/요약/키워드: Laminated Plate Theory

검색결과 264건 처리시간 0.025초

합성데크 바닥판 구조물의 진동해석을 위한 실용적인 모형화 (Practical Modeling for the Vibration Analysis of a Composite Deck Slab Structures)

  • 김재열;김기철
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.43-50
    • /
    • 2005
  • 데크플레이트와 콘크리트가 합성되어 있는 합성 바닥판 구조물은 데크플레이트의 골 방향과 골 직각방향에 대하여 강성이 다르므로 직교이방성판 거동을 보이고 있으며 테크플레이트와 콘크리트의 합성 거동으로 인하여 적층 바닥판 구조물로 평가할 수 있다. 이러한 합성데크 바닥판 구조물의 진동에 대한 정확한 사용성 평가를 위해서는 합성데크 바닥판 구조물의 정밀 진동해석을 수행하여야 한다. 이를 위해서는 합성데크 바닥판 구조물의 강성에 대한 직교이방성 그리고 데크플레이트와 콘크리트의 합성에 대한 정확한 거동 평가가 수반되어야 한다. 본 논문에서는 합성데크 바닥판 구조물의 골 직각 방향에 대한 강성을 계산하기 위하여 각각의 토핑 콘크리트 두께와 데크플레이트 두께를 적용하였다. 또한 골 방향에 대한 강성을 계산하기 위하여 콘크리트와 데크플레이트의 단면 강성을 구하여 등가두께를 적용하였다. 그리고 콘크리트와 데크플레이트의 합성거동을 표현하기 위하여 적층판에 대한 등가 강성식을 적용, 합성데크 바닥판 구조물의 강성을 나타내었다. 본 논문에서 제안한 합성데크 바닥판 구조물의 실용적인 모형화방법을 적용할 경우에 합성데크 바닥판 구조물의 강성에 대한 직교이방성과 콘크리트와 데크플레이트의 합성 거동을 잘 표현할 수 있었다.

열-전기-기계 하중을 받는 스마트 복합재 평판의 고차 지그재그 유한요소의 개발 및 성능 평가 (Development and Assessment of Higher Order Zig-zag Theory for smart composite plates under mechanical, thermal, and electric loads)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • A partially coupled thermo-piezoelectric-mechanical triangular finite element model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied mechanical load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness. Nonconforming shape functions by Specht are employed in the transverse displacement variables. Numerical examples demonstrate the accuracy and efficiency of the proposed triangular plate element.

  • PDF

용접 각 변형량 해석해를 이용한 용접 공정변수 최적화에 관한 연구 (A Study on an Optimization of Welding Process Parameters by using an Analytic Solution for the Welding Angular Distortion)

  • 이세환
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.42-48
    • /
    • 2003
  • Welding distortion is a current issue in many industrial parts, especially for heavy industry such as shipbuilding, plant industry. The welding process has many processing parameters influencing welding angular distortion such as heat input power, welding speed, gas flow rate, plate thickness and the welded material properties, etc. In this work, the conventional local minimization concept was applied to find a set of optimum welding process parameters, consisted of welding speed, plate thickness and heat input, for a minimum angular distortion. An analytic solution for welding angular distortion, which is based on laminated plate theory, was also applied to investigate and optimize the welding process parameters. The optimized process parameters and the angular distortion for various parametric conditions could be easily found by using the local minimum concept.

압전 모터 스테이터의 진동 해석 (A Study on the Vibration of an Annular Piezoelectric Motor Stator)

  • 최종운;송오섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.15-21
    • /
    • 1999
  • This study investigates the free and forced vibration characteristics of an annular piezoelectric motor stator constructed of two piezoelectric material layers and one stainless steel layer. The annular piezoelectric motor stator is subjected to a travelling load produced by piezo drive electrical voltage input to the two piezoelectric layers. The stator is modeled as an annular laminated plate based on the classical plate theory and the governing equations are derived via Hamilton's variational principle. Variation of the free vibration characteristics as a function of several design parameters has been studied and based on this result, the forced vibration responses to the input electricity of various frequencies and magnitudes are investigated. The obtained results will provide an important criterion, a priori, in the design of piezoelectric motors.

  • PDF

자기장을 받는 복합재료 판의 동적 특성 연구 (Dynamic Characteristics of Composite Plates Subjected to Electromagnetic Field)

  • 김성균;이근우;문제권;최종운;김영준;박상윤;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.681-688
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. In order to obtain the implications of a number of geometrical and physical features of the model, one special case is investigated, that is, free vibration of a composite plate immersed in a transversal magnetic field. Special coupling effects between the magnetic and elastic fields are revealed in this paper.

  • PDF

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1209-1224
    • /
    • 2014
  • In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.

Buckling of laminated composite plates with elastically restrained boundary conditions

  • Kouchakzadeh, Mohammad Ali;Rahgozar, Meysam;Bohlooly, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.577-588
    • /
    • 2020
  • A unified solution is presented for the buckling analysis of rectangular laminated composite plates with elastically restrained edges. The plate is subjected to biaxial in-plane compression, and the boundary conditions are simulated by employing uniform distribution of linear and rotational springs at all edges. The critical values of buckling loads and corresponding modes are calculated based on classical lamination theory and using the Ritz method. The deflection function is defined based on simple polynomials without any auxiliary function. The verifications of the current study are carried out with available combinations of classic boundary conditions in the literature. Through parametric study with a wide range of spring factors with some classical as well as some not classical boundary conditions, competency of the present model of boundary conditions is proved.

Glass/Epoxy 적층 복합판의 충격 응답 및 충격 응력 (The Impact Response and Impact Stress of Glass/Epoxy Laminated Composite Plates)

  • 김문생;김남식
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.29-39
    • /
    • 1990
  • The purpose of this research is to analyze the impact behaviors of laminated composite plates subjected to the transverse low-velocity impact by the steel ball. A plate finite element model based on Whitney and Pagano's the first-order shear deformation theory (FSDT) in conjunction with experimental static contact laws is formulated and then compared with the results of the impact experiments. Because the input data and the output data printed at every integration time step are lots of amount, these are interactively poecessed by the developed pre-processor(PREPLOT) and postprecessor(POSTPLOT). All results from these procesors are automatically generated by CALCOMP plotter. Test materials are glass/expoxy composite materials. The specimens are composed of [$0^{\circ} /45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}/]2s\ and \[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}/$]2s stacking sequences and have $4.5^t{\times}200^w{\times}200^l$(mm) and $4.5^t{\times}300^w{\times}300^l$(mm) dimensions.

  • PDF

적층된 ACM 경사판의 기하학적 비선형 동적 해석 (Geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials)

  • 이상열;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.28-34
    • /
    • 2010
  • W e performed a geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (ACM ) based on the first-order shear deformation plate theory (FSDT). The Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of skew angles and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite and skew plates, and the new results reported in this paper show the significant interactions between the skew angle and layup sequence in the skew laminate. Key observation points are discussed and a brief design guideline is given.

  • PDF

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.