• 제목/요약/키워드: Laminated Glass

검색결과 146건 처리시간 0.024초

흡수에 의한 FRP의 내구성에 관한 연구 (Study on the durability of fiber reinforced plastic by moisture aborsoption)

  • 문창권;구자삼
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

직물형 유리섬유로 보강된 원통형 단판적층재의 휨 강도 성능 평가 (Bending Strength Performance Evaluation of Glass Fiber Cloth Reinforced Cylindrical Laminated Veneer Lumber)

  • 이인환;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.415-423
    • /
    • 2016
  • 원통형 단판적층재는 단판 테이프를 원형 실린더에 감아서 제작된 제품이다. 단판 테이프는 단판을 직사각형으로 제단한 후 섬유 수직방향으로 재봉하여 제작하였다. 단판의 수종과 재봉사의 종류 및 재봉사의 조합을 다르게 제작한 단판테이프로 인장강도 실험이 실시되었다. 라디에타 소나무 단판에 강화 재봉사를 사용하여 재봉선 3줄로 제작한 단판 테이프의 인장강도 성능이 가장 우수하였다. 또한 단판 테이프의 이격 및 끊어짐 현상이 개선되어 원통형 단판 적층재의 작업성이 향상되었다. 원통형 단판적층재는 단판 테이프의 종류와 직물형 유리섬유의 보강 유무 및 단판 적층 수를 다르게 제작하여 낙엽송 원목과 휨강도 성능을 비교 검토하였다. 직물형 유리섬유를 체적비 11%로 보강한 시험편은 휨 파괴계수가 보강하지 않은 시험편보다 65% 향상되었다. 재봉선 2줄 단판 테이프로 제작한 원통형 단판적층재는 단판 테이프 간 Butt joint에서 파단이 발생하였다. 하지만 재봉선 3줄 단판 테이프로 제작한 원통형 단판적층재는 섬유방향으로 파단이 발생하였다.

브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향 (The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite)

  • 이경우;강태진
    • 한국재료학회지
    • /
    • 제4권3호
    • /
    • pp.253-258
    • /
    • 1994
  • S2-유리 섬유/폴리에스터 브레이드 복합재료에서 원공의 크기 및 원공간 거리 변화가 인장성질, 핀하중 인장성질, 굽힘성질에 미치는 영향을 연구하였다. 원공의 크기에 따른 복합재료의 인장강도의 저하는 Whitney와 Nuismer에 의해 제시된 이론값과 대체로 일치함을 보여주었으며 이때의 특성길이($d_o$)는 브레이드 복합재료는 약 1.6mm, 직물 적층 복합재료는 약 1.8mm가 되었다. 브레이드 복합재료의 원공간 거리 변화에 따른 인장강도의 변화는 두 원공 중심 사이의 거리가 원공 지름의 4배 이상이면 원공간 상호작용이 없었다. 원공의 중심과 측면간 거리에 따른 인장강도의 변화는 원공의중심과 측면간 거리가 원공 지름의 3배 이상일 때 상호작용이 없었다. 핀하중 인장실험에서 브레이드 복합재료와 직물 적층 복합재료 모두 핀의 지름이 증가함에 따라 Bearing Stength는 감소하였다.

  • PDF

폐자동차 유리의 재활용 현황 (Overview and Recycling of Waste Automobile Glass)

  • 윤진호;박경수;홍명환;박재량;이찬기
    • 자원리싸이클링
    • /
    • 제24권1호
    • /
    • pp.51-57
    • /
    • 2015
  • 유리는 고대시대부터 현재에 이르기까지 지속적으로 사용되고 있으며, 최근에는 최첨단 기술이 추가된 스마트 유리산업이 성장하고 있다. 이러한 스마트 유리는 라이프 사이클이 기존 유리보다 빠르기 때문에 교체 주기에 발맞춰서 재활용을 위해 보다 근본적이고 핵심적인 기술 개발이 필요한 상황이다. 스마트 유리 중에서 재활용 기술 개발이 가장 시급한 분야는 자동차 분야이며 자동차 폐차 시에 폐기되는 스마트 유리의 양은 연간 약 23,000톤 이상인 것으로 보고되고 있다. 본 논문에서는 국내 자동차 유리의 현황을 살펴보고, 국내의 재활용 기술과 재활용 방안 등에 대해 소개하고자 한다.

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

복합재료 곡면형 자동기의 최적설계를 위한 대규모 수치해석 연구 (Large-scale Simulation for Optimal Design of Composite Curved Piezoelectric Actuator)

  • 정순완;황인성;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.5-8
    • /
    • 2005
  • In this paper, the electromechanical displacements of curved piezoelectric actuators composed of PZT ceramic and laminated composite materials are calculated based on high performance computing technology and the optimal configuration of composite curved actuator is examined. To accurately predict the local pre-stress in the device due to the mismatch in coefficients of thermal expansion, carbon-epoxy and glass-epoxy as well as PZT ceramic are numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers increases the number of degrees of freedom, large-scale structural analyses are performed through the PEGASUS supercomputer, which is installed in our laboratory. In the first stage, the curved shape of the actuator and the internal stress in each layer are obtained by the cured curvature analysis. Subsequently, the displacement due to the piezoelectric force (which is resulted from applied voltage) is also calculated. The performance of composite curved actuator is investigated by comparing the displacements obtained by the variation of thickness and elastic modulus of laminated composite layers. In order to consider the finite deformation in the first analysis stage and include the pre-stress due to curing process in the second stage, nonlinear finite element analyses are carried out.

  • PDF

압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구 (Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method)

  • 황희윤
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.