• 제목/요약/키워드: Laminate tooling

검색결과 4건 처리시간 0.019초

급속금형제작 (1): 분말주조에 의한 정형(正形)에의 도전 (Rapid Tooling : Challenge to Net Shape by Powder Casting)

  • 임용관;김범수;정해도;배원병
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.85-90
    • /
    • 1998
  • The business of manufacturing is increasingly becoming time-compressing, precise and long-life oriented, owing to various needs from the consumers and harsh global competition. With the emergence of the layer laminate manufacturing method, it is possible to produce prototypes directly from 3D CAD and additive process, the production time and cost have shortened dramatically. However there are some problems like surface-step, dimensional deviation and warp. A newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising rapid tooling method because of high density characteristics and low dimensional shrinkage below 0.1% during sintering and infiltration. By this process, we have realized significant time savings bypassing the wait for prototype tooling and cost savings eliminating the expense of conventional prototype tooling process.

  • PDF

DEVELOPMENT AND REPAIR OF LAMINATE TOOLS BY JOINING PROCESS

  • Yoon, Suk-Hwan;Na, Suck-Joo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.402-407
    • /
    • 2002
  • Laminate tooling process is a fast and simple method to make metal tools directly for various molding processes such as injection molding in rapid prototyping field. Metal sheets are usually cut, stacked, aligned and joined with brazing or soldering. Through the joining process, all of the metal sheet layers should be rigidly joined. When joining process parameters are not appropriate, there would be defects in the layers. Among various types of defects, non-bonded gaps of the tool surface are of great importance, because they directly affect the surface quality and dimensional accuracy of the final products. If a laminate tool with defects has to be abandoned, it could lead to great loss of time and cost. Therefore a repair method for non-bonded gaps of the surface is essential and has important meaning for rapid prototyping. In this study, a rapid laminate tooling system composed of a CO2 laser, a furnace, and a milling machine was developed. Metal sheets were joined by furnace brazing, dip soldering and adhesive bonding. Joined laminate tools were machined by a high-speed milling machine to improve surface quality. Also, repair brazing and soldering methods of the laminates using the $CO_2$ laser system have been investigated. ill laser repair process, the beam duration, beam power and beam profile were of great importance, and their effects were simulated by [mite element methods. The simulation results were compared with the experimental ones, and optimal parameters for laser repair process were investigated.

  • PDF

급속금형제작 : 분말주조에 의한 Perfect Shape에의 도전

  • 임용관;김범수;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 1995
  • The business of manufacturing is increasingly becomeing time-compresssing, precise and long-life oiented, owing to various needs form the consumers and harsh global competition. with the emergence of the layer laminate maunfacturing methods, it is possible to prototypes directly from 3D CAD and additive process, the production time and cost have shortened dramatically. However there are some problems like surface-step, dimensional deviation and warp. A newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising repid tooling method because of high density charateristics and low dimensional shrinkage below 0.1% during sintering and infiltration. By this process, we have realized significant time savings bypassing the wait for prototype tooling and cost savings eliminating the expense of conventional prototype tooling process.

  • PDF