• Title/Summary/Keyword: Laminar jet

Search Result 155, Processing Time 0.018 seconds

Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames (층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo;Bae, Dae-Seok;Yun, Jin-Han;Keel, San-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We experimentally investigated lifted propane jet flames diluted with nitrogen to obtain flame-stability maps based on heat-loss-induced self-excitation. We found that heat-loss-induced self-excitations are caused by conductive heat loss from premixed flame branches to trailing diffusion flames as well as soot radiation. The conductive-heat-loss-induced self-excitation at frequencies less than 0.1 Hz is explained well by a suggested mechanism, whereas the oscillation of the soot region induces a self-excitation of lift-off height of the order of 0.1 Hz. The suggested mechanism is also verified from additive experiments in a room at constant temperature and humidity. The heat-loss-induced self-excitation is explained by the Strouhal numbers as a function of the relevant parameters.

Heat Transfer Characteristics of Water Jet Impinging on Oblique Surface (경사면(傾斜面)에 충돌(衝突) 하는 수분류(水噴流)의 열전달(熱傳達) 특성(特性)에 관(關)한 연구(硏究))

  • Choi, Guk-Gwang;Na, Gi-Dae;Kim, Yeun-Young;Jeon, Sung-Taek;Lee, Jong-Su
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • The purpose of this research is to investigate the characteristics of heat transfer in the downward axisymmetric free water jet system impinged on a flat oblique plate which has the uniform heat flux. Experimental conditions considered were Reynolds number, distance between nozzle and Bat plate, inclination angle of heater surface and nozzle exit velocity. Local Nusselt number was subjected to the influence of Re number, Pr number, oblique angle of heating surface and local position of flat plate. In the wall region of downward surface, The secondary peak point of heat transfer appeared at the local point of X/D=-8 from the stagnation point. The stagnation heat transfer rate of this experimental study augments 2.4 times than that of laminar theorical solution. The stagnation nusselt number is function of Reynolds number, nozzle-plate spacing Prandtl number and oblique angle of impinging plate.

  • PDF

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame (부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong;Kim, Kyung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantity the triple flame propagation velocity, Bilger presents the triple flame propagation velocity, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the flame radius of curvature and scalar dissipation rate. In the present research, there was discussion about the radius of flame curvature and scalar dissipation rate, through the numerical study. As a result, we have known that the flame propagation velocity was linear with the nozzle exit velocity and scalar dissipation rate decreases nonlinearly with the flame propagation velocity and radius of curvature of flame increases linearly. Also radius of curvature of flame decreases non-linearly with the scalar dissipation rate. Therefore, we ascertained that there was corelation among the scalar dissipation rate, radius of flame curvature and flame propagation velocity.

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.