• Title/Summary/Keyword: Laminar Wavy Liquid Film

Search Result 2, Processing Time 0.017 seconds

Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation (수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교)

  • Park, Il-Seouk;Kim, Young-Jo;Min, June-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1169-1176
    • /
    • 2011
  • Liquid film flows are classified into waveless laminar, wavy laminar, and turbulent flows depending on the Reynolds number or the flow stability. Since the wavy motions of the film flows are so intricate and nonlinear, studies on them have largely been experimental. Most numerical approaches have been limited to the waveless flow regime. The various free surface-tracking schemes adopted for this problem were used to more accurately estimate the average film thickness, rather than to capture the unsteady wavy motion. In this study, the wavy motions in laminar wavy liquid film flows with Reynolds numbers of 200-1000 were simulated with various numerical schemes based on the volume of fluid (VOF) method for interface tracking. The results from each numerical scheme were compared with the experimental results in terms of the average film thickness, the wave velocity, and the wave amplitude.

A study on the flow characteristics of laminar wavy film (층류파형 액막의 유동특성에 관한 연구)

  • Kim, Jin-Tae;Lee, Gye-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.628-636
    • /
    • 1997
  • Flow visualization technique incorporating photochromic dye is used to study the flow characteristics of the gravity driven laminar wavy film. The film thickness and wave speed are successfully measured by flow visualization. As the inclination angle increases, the waves have higher peaks and lower substrate thickness. The measured cross stream velocity at the free surface is up to 10% of stream wise velocity, which shows enhanced mixing in the lump of the film. The measured stream wise velocity profiles are close to parabolic profile near the substrate and the peak but show significant velocity defect near the rear side of the wave. The measured wall shear rate distributions show good agreement with the previous workers' numerical results.