• Title/Summary/Keyword: Laminar Flamelet Model

Search Result 32, Processing Time 0.018 seconds

Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor (가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석)

  • Joung, Dae-Ro;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow (Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사)

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.

Conditional moment closure modeling in turbulent nonpremixed combustion (난류확산연소에서의 conditional moment closure modeling)

  • Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.24-32
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OH in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Conditional Moment Closure Modeling in Turbulent Nonpremixed Combustion (난류확산연소에서의 Conditional Moment Closure Modeling)

  • Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OR in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Study of the ENC reduction for mobile platform (모바일 플랫폼을 위한 전자해도 소형화 연구)

  • 심우성;박재민;서상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.181-186
    • /
    • 2003
  • The satellite navigation system is widely used for identifying a user's position regardless of weather or geographic conditions and also make effect on new technology of marine LBS(Location Based Service), which has the technology of geographic information such as the ENC. Generally, there are conceivable systems of marine LBS such as ECDIS, or ECS that use the ENC itself with powerful processor in installed type on ships bridge. Since the ENC is relatively heavy structure with dummy format for data transfer between different systems, we should reduce the ENC to small and compact size in order to use it in mobile platform. In this paper, we assumed that the mobile system like PDA, or Webpad can be used for small capability of mobile platform. However, the ENC should be updated periodically by update profile data produced by HO. If we would reduce the ENC without a consideration of update, we could not get newly updated data furthermore. As summary, we studied considerations for ENC reduction with update capability. It will make the ENC be useful in many mobile platforms for various applications.

  • PDF

Radiation-Induced Oscillatory Instability in Diffusion Flames (복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구)

  • Sohn, Chae Hoon;Kim, Jong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF

A Simulation of Flame-Vortex Interaction considering the Alteration of Vortex by Flame (와동의 변화를 고려한 화염-와동 상호 작용 모사)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.189-196
    • /
    • 2000
  • A numerical simulation was conducted to analyze the interaction of flame and vortices. The characteristic scales of flame and vortices were limited in the thin laminar flamelet regime. Within this regime, flame is assumed as discontinuity surface and its motion in flow field was described by G-equation instead of full governing equations. Additional approximations include distribution of line volume sources on flame surface to simulate effect of volume expansion. Contrast to previous calculations, current study employed vortex transport equation to evaluate attenuation and smearing of vortices. Two extreme conditions of frozen vortex and frozen flame were considered to validate the current method. Comparison with direct numerical simulation resulted in satisfactory quantitative agreement with higher computational efficiency which warrants the usefulness of the present model in more complex situation.

  • PDF

Numerical Analysis of Recess Effects on Gaseous Hydrogen/Liquid Oxygen Coaxial Injector (수소-산소 동축 분사기에 대한 리세스 효과 수치해석)

  • Lee, Kibum;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.17-24
    • /
    • 2016
  • The reacting flows of gaseous hydrogen/liquid oxygen 2D coaxial shear injector with varying recess length are numerically analyzed. The standard ${\kappa}-e$ model and laminar flamelet model are adopted for the steady turbulent combustion with the ideal and real gas equations. As the recess length increases, the recirculating region in the combustion chamber expands and the vorticity is intensified. Also, the variations of temperature, products, and pressure are strongly related to the recess length. The results show that an efficient combustor can be obtained by the introduction of the recessed injector.