• Title/Summary/Keyword: Lamellar

Search Result 398, Processing Time 0.026 seconds

Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication (관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

Melting Behavior of Uni-Axially Deformed Polyethylenes Containing Comonomers as Studied by in-situ Small and Wide Angle X-ray Scattering (실시간 소각 밑 광각 X-선 산란을 이용한 일축 변형된 공단량체 함유 폴리에틸렌의 용융 거동)

  • Cho, Tai-Yon;Jeon, Hye-Jin;Ryu, Seok-Gn;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.183-188
    • /
    • 2009
  • Structural rearrangements of uni-axially deformed polyethylenes containing 1-octene comonomer and HDPE upon heating were investigated by time-resolved small and wide angle X-ray scattering techniques. During heating, structural changes including crystal transformation and lamellar rearrangement noted were very different depending on the comonomer contents. At low comonomer content below 2 wt%, inverse martensitic transformation of crystal lattice from monoclinic to orthorhombic cell and the rearrangement of broken lamellar units into more ordered and perfect lamellar stacks were noted with the temperature increase. At high contents above 9.5 wt%, however, polyethylene copolymers showed neither the crystal transformation nor lamellar rearrangement that can be attributed to low crystallinity and high content of branch units.

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys (Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

The Study of Emulsion System Containing with Perfluorinated Compounds (PFCs) (Perfluorinated Compounds (PFCs) 안정화 시스템의 연구)

  • Choi, Bong-Ki;Cho, Hee-Won;Kim, Hyo-Jung;Lee, Joo-Dong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.239-243
    • /
    • 2007
  • When Perfluorinated Compounds (PFCs) are applied in cosmetic products, they have many merits because of unique feeling and characters. However, it is very difficult to use them as cosmetic ingredients because they are insoluble material in oil and water and have high specific gravity. To develop a special system to stabilize PFCs in cosmetic products, we compared three systems, of gel network system, spherulite lamellar system, and nanostructure system. We found that nanostructure system was the optical system for stabilizing PFCs.

Effects of Mo additions on the room-temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl

  • O, Myeong-Hun;Kim, Min-Cheol;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 1995
  • The effects of Mo additions on the microstructure and the room temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl were studied in order to get a basic conception for alloying additions on the two-phase TiAl compounds with the lamellar structure. It was found that the Mo additions in TiAl PST crystals increase both the yield stress and tensile elongation to fracture but the increase in yield stress deppend on the angle $\Phi$at which the lamellar boundaries lie from the loading axis. The large difference in yield stress between specimens deformed parallel($\Phi = 0^\circ$)or perpendicular($\Phi = 90^\circ$) to the loading axis and those deformed in intermediate orientations could be plained by the difference in Mo content between the TiAl and the $$Ti_{3}Al$ phases. It was also found that the Mo-doped specimens with intermediate orientation fail by cracking zigzag across to the lamellar boundaris, which is the same fracture mode as that of binary specimens with intermediate orientations tested in vacuum This suggests that Mo atoms are thought to play a role to reduce the environmental embrittlement of binary PST crystals, resulting in increasing the tensile ductility.

  • PDF

Healing of mandibular through-and-through osseous defects by Guided Tissue Regeneration in ferrets

  • Baek, Seung-Ho;Kim, Syng-cuk
    • The Journal of the Korean dental association
    • /
    • v.34 no.10 s.329
    • /
    • pp.742-751
    • /
    • 1996
  • 본 연구의 목적은 관통된 뼈의 결손부위를 각기 다른 membrane(Gore-tex, Vicryl, Guidor)을 사용하여 보다 나은 골 재생을 얻을 수 있는 가를 평가하는 데 있다. 여섯 마리 흰 족제비의 12개 하악 소구치를 근관치료한 후, 치근단 절제술을 실시하여 $3mm\times5mm$ 크기의 관통된 뼈의 결손을 소구치의 근첨부에 형성하였다. 전부 12개의 결손부위가 형성되었고, 이를 3개의 군으로 나누었다. 대조군으로 결손부위를 membrane barrier없이 점막골막피판으로 덮었다. 다른 각 군은 결손부위를 각 Gore-Tex, Vicryl, Guidor membrane을 사용하여 설측과 협측 모두 덮었다. 각 군을 치유기간 6주와 12주로 두 아군으로 분리하였다. 방사선학적 소견으로 6주군에서 대조군은 $65\%$, Gore-Tex군은 $90\%$, Vicryl군은 $95\%$, Guidor군은 $65\%$의 결손부위의 치유를 보였다. 12주 군에서 대조군은 $80\%$, Gore-Tex군은 $95\%$, Vicryl군은 $95\%$, Guidor군은 $90\%$의 치유를 보였다. 조직학적 소견으로 대조군에서는 완전한 골 재생이 일어나지 않았으며, 결손부위로 결합조직이 자라들어온 것이 관찰되었다. Gore-Tex 6 주군에서는 대부분 fibrillar bone이 관찰되었고, 12 주군에서는 부분적으로 lamellar bone이 형성되었다. Vicryl군에서는 거의 완전한 골의 재생이 관찰되었다. 6주군에서는 재생된 뼈는 fibrillar bone이고 부분적으로 lamellar bone을 관찰되었고, 12주 군에서는 주로 lamellar bone으로 구성되었다. Guidor군에서는 제한적인 골 재생과 함께 심한 염증이 관찰되었다. 본 연구의 결과에서 조직재생유도술은 일반적으로 골 재생을 증진시킴을 볼 수 있었고, Vicryl membrane이 가장 뛰어난 골 재생유도 가능성을 보였다.

  • PDF

Physico-Chemical Properties of Pseudoceramide in Relation to Bilayer-Forming

  • Jeong, Min-Woo;Oh, Seong-Geun;Kim, Do-Hoon;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.3-15
    • /
    • 2001
  • The bilayer forming ability of pseudo-ceramide PC104 in octanoic acid/water/n-octyl $\beta$-D-glucoside mixtures was investigated through the phase diagram. Because of its low solubility in water and of its crystallization, pseudoceramide PC104 was dissolved in octanoic acid, which is nontoxic additive for foods and cosmetics. The mixtures formed four different phases (L1, L2, LC and two phases). Depending on the concentration of PC104 in octanoic acid, the region of each phase was extended or contracted. On the contrary to the region of L2, regions of lamellar phase and L1 phase were expanded. The bilayer-forming ability of PC104 was explained on the basis of concentration of PC104 at interface and interaction between PC104 and octanoic acid. From FT-IR results, it was found that the interactions of PC104’s polar head group with octanoic acid increased as the amount of PC104 in octanoic acid increased. Also emulsion size and size distribution have been studied depending upon the emulsification path. droplets of emulsion prepared from lamellar phase were smaller and more homogeneous compared to those of emulsions formed from L2 phase.

  • PDF