• Title/Summary/Keyword: Lake Yongdam

Search Result 12, Processing Time 0.015 seconds

Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Lake Yongdam, Korea (용담호에서 환경요인과 식물플랑크톤의 시공간적 변동)

  • Kwon, Sang-Yong;Kim, Young-Geel;Yih, Won-Ho;Lim, Byung-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.366-377
    • /
    • 2006
  • Environmental gradients and phytoplankton community were studied on a monthly basis, at 3 stations of Lake Yongdam, from April 2002 March 2004. During July to August, thermocline formed at the depth of about 10 m, but it was lowerd depth, in between 25${\sim}$30 m in October. Monthly variations of the epilimnetic (0${\sim}$5 m) TP concentrations at station 1, 2 and 3 were in the range of $5.1{\sim}36.1\;mg\;P\;{\cdot}\;m^{-3}$, $6.1{\sim}77.7\;mg\;P\;{\cdot}\;m^{-3}$ and $6.7{\sim}47.7\;mg\;P\;{\cdot}\;m^{-3}$ respectively; with higher concentrations at the upstream areas showing. Monthly average of the epilimnetic (0${\sim}$5 m) TN concentration at Station 1 was in the range of $0.88{\sim}1.73\;mg\;N\;{\cdot}\;L^{-1}$, and Station 3 was in the range of $0.94{\sim}2.77\;mg\;N\;{\cdot}\;L^{-1}$, which is higher if compared with the values of station 1. Transparency wa:s in the range of 0.8${\sim}$6.7 m, with lower values at upstream areas and higher at the downstream area. As for phytoplankton, during the winter season, diatoms had high appearance rate; during the spring season, Cyclotella comta, Aulacoseira ambigua f. spiralis, A. granulata and similar diatoms, during spring and summer Ankistrodesmus spiralis, Chodatella subsala, Crucigenia irregularis, Coelastrum cambricum, Scenedesmus ecornis v. ecornis.

Estimation of evaporation from water surface in Yongdam Dam using the empirical evaporation equaion (경험적 증발량 공식을 적용한 용담댐 시험유역의 수면증발량 추정)

  • Park, Minwoo;Lee, Joo-Heon;Lim, Yong-kyu;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.139-150
    • /
    • 2024
  • This study introduced a method of estimating water surface evaporation using the physical-based Penman combination equation (PCE) and the Penman wind function (PWF). A set of regression parameters in the PCE and PWF models were optimized by using the observed evaporation data for the period 2016-2017 in the Yongdam Dam watershed, and their effectiveness was explored. The estimated evaporation over the Deokyu Mountain flux tower demonstrated that the PWF method appears to have more improved results in terms of correlation, but both methods showed overestimation. Further, the PWF method was applied to the observed hydro-meteorological data on the surface of Yongdam Lake. The PWF method outperformed the PCE in the estimation of water surface evaporation in terms of goodness-of-fit measure and visual evaluation. Future studies will focus on a regionalization process which can be effective in estimating water surface evaporation for the ungauged area by linking hydrometeorological characteristics and regression parameters.