• Title/Summary/Keyword: Lake Shihwa

Search Result 88, Processing Time 0.02 seconds

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

The Study on the Phytoplankton Bloom and Primary Productivity in Lake Shihwa and Adajcent Coastal Areas (시화호와 시화호 주변 해역 식물플랑크톤의 대증식과 일차 생산력에 관한 연구)

  • Choi, Joong-Ki;Lee, Eun-Hee;Noh, Jae-Hoon;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1997
  • To clarify the phytoplankton blooms in Lake Shihwa after the construction of a dyke, a study on the environmental factors, the distribution of chlorophyll-a, phytoplankton standing stocks, dominant species and primary productivity was carried out in Lake Shihwa and adjacent coastal areas from October, 1995 to August, 1996. Lake Shihwa is brackish water with mixing of freshwater from tributaries and the remaining salt water at the bottom. The dense phytoplankton bloom of average value of 168.6 ${\mu}gChl-a\;l^{-1}$ have occurred throughout the year in Lake Shihwa which is eutrophicated by the large input of nutrients from inflowing 5 tributaries and Shihwa Industrial Complex. The major organisms of algal bloom in Lake Shihwa were diatoms, Cyclotella atomus, Nitzschia sp. and Chaetoceros sp. in autumn and winter, and dinoflagellate Prorocentrum minimum and Chrysophyceae in spring and summer. The autumn and winter diatom blooms were limited by the depletion of silicate in the lake. Diatom blooms have occurred in the coastal areas adjacent to Shihwa lake from winter to summer due to the inflow of nutrient rich-water from Lake Shihwa. The primary productivities in the Lake Shihwa ranged from 2,653 mgC $m^{-2}\;day^{-1}$ to 9,505 mgC $m^{-2}\;day^{-1}$ with an average of 3,972 mgC $m^{-2}\;day^{-1}$. However, most of the high primary production was limited to the shallow euphotic zone due to the inhibition of light penetration. The primary productivities during autumn and winter were limited by the depletion of silicate. Lack of photosynthesis and the decomposition of falling organic matter under the middle of water column accelerated the depletion of dissolved oxygen in the bottom layer.

  • PDF

Foraminifera as an Indicator of Marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.35-37
    • /
    • 2005
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west coast of Korea, were collected to evaluate the effect of the outfall on benthic foraminifera. Heavy metal (Cu and Zn) polluted eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifera, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifera abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants from the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifera, low number of A. beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared to the downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-pyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifera do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-50 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Spatial and Temporal Variations of Foraminifers as an Indicator of marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.59-73
    • /
    • 1998
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west cost of Korea, were collected to evaluate the effect of the outfall on benthic foraminifers. Heavy metal (Cu and Zn) polluted the eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifers, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifers abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants form the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifers, low number of Ammonia beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared of both downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-phyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifers do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-15 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Changes in Sea Water Characteristics Due to Operation of Shihwa Tidal Power Plant (조력발전소 가동에 따른 시화 해역의 해수특성 변화)

  • Kang, Young Seung;Chae, Yeongki;Lee, Hyung Rae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.219-235
    • /
    • 2013
  • In order to investigate the changes in sea water characteristics and stratification due to operation of Shihwa tidal power plant, three dimensional numerical model is used. In summer, the density of inner part of Shihwa Lake is more affected by salinity than water temperature due to fresh water discharge. Before tidal power plant operation, the sea water characteristics in Shihwa Lake shows relatively high temperature and low salinity. After tidal power plant operation, water temperature decreases slightly and salinity tends to increase in Shihwa Lake. Also, density increases and stratification tends to weaken by mixing with sea water.

Distribution of TOC and metals in the surface sediments of the Lake Shihwa (시화호 표층 퇴적물의 유기탄소와 금속의 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Kim, Jong-Kun;Lee, Jeong-Moo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.159-164
    • /
    • 2008
  • In order to understand the spatio-temporal distribution of geochemical parametrs in surface sediments of the artificial Lake Shihwa in the vicinity of Kyunggi Hay in Korea, surface sediments were sampled at 14 sites in July 2007 and analyzed by CHN analyzer and ICP/MS. Metal concentrations in the sediments tended to be decreasing from the head to the mouth of the Lake Shihwa because of extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complex and cities. With the deposition of fine-grained sediments, high metal concentrations were also observed in the central part of lake. Although various programs(improvement of wastewater collection and treatment system, sea-lake water exchange etc) to improve the environmental conditions around the Lake Shihwa after dike construction were carried out, it was not dear to reach a good environmental quality. Therefore, further environmental programs should be conducted continuously for environmental improvement.

  • PDF

A Study on Settling Properties of Cohesive Sediments in Shihwa Lake (시화호 점착성 퇴적물의 침강 특성에 관한 연구)

  • LEE YOUNG-JAE;LEE SANG-HWA;HWANG KYU-NAM;RYU HONG-RYUL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.42-48
    • /
    • 2005
  • The sediment of Shihwa Lake contains an abundant quantity of cohesive sediments. The transport processes of the cohesive sediments are complex and difficult to predict, quantitatively. The cohesive sediments are the primary reason for the pollution of the environment and water quality in the coastal region. In this study, a column test has been performed. In order to quantify the settling velocities of sediment from Shihwa Lake, an experiment was conducted using a specially designed 1.8m tall settling column. A series of settling tests and physico-chemical property tests on Shihwa Lake cohesive sediments has been conducted to investigate the correlation between settling properties and their physico-chemical properties, which are represented as grain size distribution, mineralogical composition, and percentage oj organic contents. Experimental results of physico-chemical property tests show that Shihwa Lake sediments are relatively large in average grain $size(74\mu m)$ contain very small organic $material(6\%)$, and are dominantly composed of Quarts, which has relatively low cohesion. Thus, Shihwa Lake sediments might be specified as those whose settling properties are more influenced by gravity than cohesion. It is concluded that the magnitude of settling velocities of muddy sediments can be quite different, regionally, and it implies that field or laboratory experiments for settling velocity measurement should be preceded over the numerical modeling of muddy sediment transport, in order to obtain the reliable prediction results for a given specific site.

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Assessment of Organic Matter Sources in the Singil Stream Flowing into Lake Shihwa, South Korea

  • Kim, Dahae;Kim, Jung-Hyun;Kang, Sujin;Kim, Min-Seob;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • The Singil Stream, flowing into an artificial lake, Lake Shihwa (South Korea), experiences a strong anthropogenic pressure with continuous organic matter (OM) inputs from rural, urban, and industrial areas. In this study, we investigated suspended particulate matter (SPM) and streambed sediments collected along the Singil Stream in 2014 and 2016, by applying a dual element approach (δ13C and δ15N) to identify OM sources. The SPM and streambed sediment samples from the indusrial area showed higher organic carbon and nitrogen concentrations (or contents) than those from the other areas, with distinctively lower δ15N values. Accordingly, our dual element approach indicates that the industrial area was the predominant OM source influencing OM quality and thus water quality of the Singil Stream flowing into Lake Shihwa during the study periods. However, further studies are necessary to better constrain OM sources in the Singil Stream since OM sources from the industrial area appear to be complex.

Characteristics of Water Quality In the Shihwa Lake and Outer Sea (시화호 및 주변해역의 수질 특성)

  • Jang, Jeong-Ik;Han, Ihn-Sub;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.105-121
    • /
    • 2011
  • The operation of tidal power facility may induce severe changes of water quality in Shihwa Lake. Current water quality data are quite important to water quality management policy of Shihwa Lake. Thus, the water quality data of Shihwa Lake and its adjacent sea in 2010 were presented to characterize the temporal and spatial changes of water parameters such as pH, SS, DO, COD, dissolved nutrients, chlorophyll-a, TN and TP. Highest levels of water quality parameters were observed near the Shihwa and Banweol industrial complexes and the levels of water quality parameters were on a decreasing trend to those near the water gate. It suggests that the horizontal distributions of water quality levels are mainly controlled by the supply of fresh water from streams and the inflow of outer seawater by operation of water gate. Although the higher concentrations of TN and TP were observed in the location being affected by Sorae port, the levels of water quality parameters in outer sea of Shihwa Lake were lower than those in Lake. In summer season, hypoxic condition was well developed in bottom water by strong stratification and active decomposition of organic matter. Thus, the vertical distributions of dissolved nutrient, TN and TP concentrations showed the concentrations to be higher in bottom seawater than those in surface seawater whereas the vertical distributions of chlorophyll-a, COD and POC concentrations showed the concentrations to be higher in surface seawater than those in bottom water. Results of Pearson's correlation matrix for surface seawater demonstrated that salinity showed negatively good correlation with not only dissolved nutrients except for ammonium but chlorophyll-a, COD and POC This result indicates that the supply of dissolved nutrients through several streams might significantly affect phytoplankton bloom and increase of COD concentration in surface seawater.