• 제목/요약/키워드: Lake Sediments

Search Result 180, Processing Time 0.022 seconds

Comparative Analysis of Dissimilatory Sulfite Reductase (dsr) Gene from Sediment of Lake Sihwa, Korea and Lake Aha, China (한국 시화호와 중국 Aha호 저질토에 분포하는 이화성 아황산염 환원효소 유전자의 비교 분석)

  • Kim, In-Seon;Kim, Ok-Sun;Jeon, Sun-Ok;Witzel, Karl-Paul;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • The diversity of sulfate reducing bacteria was investigated in different depths of sediments in Lake Sihwa, Korea and Lake Aha, China by PCR amplification, denaturing gradient gel electrophoresis (DGGE) and clone libraries targeting dissimilatory sulfite redectase (dsr) gene. In the analysis of DGGE band patterns, the community compositions of dsr gene in the sediments of both lakes were significantly different whereas bands in all depths of each environment revealed similar patterns. Bands from Lake Sihwa were produced much more than those from Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Total 68 clones containing dsr gene were obtained to analyze their sequences. Sequences from the sediment of Lake Sihwa were affiliated to Deltaproteobacteria, the Gram-positive thermophilic sulfate reducers belonging to the genus Desulforomaculum and archaeal thermophilic SRB belonging to the genus Archaeoglobus, whereas sequences from the sediments of Lake Aha were related to genus Desulfotomaculum. Clones retrieved from sediment of Lake Sihwa revealed a higher numbers than those of Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Most of clones (59%) were distantly related to the known cultivated SRB with $60\sim65%$ of similarity, which were clustered only the sequences from the environments showed less than 90% similarity. These habitat specific sequences suggested that the clustered dsr sequences represent species or groups of species that were indigenous to these environments. This study showed that these lakes have a specific bacterial communities having dsr gene distinct from those in other environments such as soil and marine ecosystems around the world.

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Spatial distribution of sediments in the Soyang Lake based on geostatistical analyses (지구통계기법을 이용한 소양호퇴적물 분포연구)

  • Kim, Ki-Young;Hwang, Yoon-Gu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.285-290
    • /
    • 2006
  • To access the volume of sediments deposited after construction of the Soyang Dan and to understand their distribution in the Soyang lake, acoustic profiling using a 10-20 kHz system was conducted along profiles of 227 km length. Profile intervals are approximately 50 and 500 m for longitudinal and cross lines, respectively. The data were gain-controlled and then migrated using the f-k algorithm. After digitization of boundaries of the sediments, the acoustic interpretation was verified through correlating with 38 core samples. Thickness of the sediments averages 0.25 m and reaches to 8.25 m at maximum. Estimated total volume of the sediments based on anisotropic models in geostatistical methods is approximately $5.9{\times}10^6\;m^3$, which is more than twice greater than the earlier estimation based on an isotropic model.

  • PDF

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.

The geochemical properties of phosphorus from sediments of Lake Shihwa (시화호 퇴적물에서 인의 지화학적 특성)

  • Shim Moo-Joon;Cho Sung-Rok;Na Kong-Tae;Shin Jin-Sun;Kim Eun-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.16-27
    • /
    • 2001
  • We have studied the phosphorus geochemistry in sediments from anoxic environments of Lake Shihwa. The dominant sedimentary phosphorus forms were detrital apatite P and Al-bound p, whereas the amount of Fe-bound P was low because of anoxic condition. Based on the correlation between TP(Total Phosphorus) and OC(Organic Carbon), the behavior of sedimentary phosphorus was influenced by organic matters. It shows that dissolved and solid phosphorus concentrations, the flux of phosphate and the correlation coefficients between sedimentary phosphorus and organic matter In St. Cl were higher than those in St. C2. The results indicate that the concentrations and distributions of phosphorus In sediments were controlled by organic matters.

  • PDF

Abundance of Polychaetes in Lake Shihwa, Korea

  • Lee, Jong-Hyeon;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.122-131
    • /
    • 1999
  • This study examined the relationship between the sediment pollution and the occurrence of polychaetes in a heavily polluted saltwater lake, Lake Shihwa on the west coast of Korea, separated from the sea by a dike in 1994. The species composition of polychaete assemblage was compared with that found off the lake in Kyeonggi Bay. Environmental variables investigated both in and off the lake were the grain size distribution, chemical oxygen demand(COD) and metal concentrations (Al, Fe, Mn, V, Co, As, Pb, Cr and Cu) in the sediment. We sampled sediments at 10 stations in the lake and 25 stations in Kyeonggi Bay using a modified van Veen grab. The levels of COD, chromium, and copper in sediments were much higher in Lake Shihwa than in Kyeonggi Bay. Differences in the species composition were found along the pollution gradient. An azoic zone was observed in the most heavily polluted area at the upper reach of the lake and the Polydora ligni zone in the center of the lake. Bottom fauna were diverse in Kyeonggi Bay; however, Heteromastus filiformis predominated in the organically enriched sediment. The density of dominant species differed along the pollution gradient. The highest density or H. filiformis was round at the COD level or around 5.8 mg/g. The COD level in the sediment where P. ligni predominated was tow-fold higher than that where H. filiformis occurred in large numbers. The chromium and copper contents at which P. ligni showed a maximum abundance were 120 mg/kg and 127 mg/kg, respectively. The density of H. filiformis was highest at concentrations of 56 mg/kg chromium and 13 mg/kg copper.

  • PDF

Effects of Drying and Heating on the Chemical Species of Heavy Metals in Lake Chungcho Sediments (건조 ${\cdot}$ 가열처리가 청초호 퇴적물 중 중금속의 화학적 존재형태에 미치는 영향)

  • Park, Gil-Ok;Kim, Hee-Joung;An, Hae-Jung;Kim, Shin-Hee;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.334-340
    • /
    • 2005
  • The chemical forms of Cd, Cu, Pb, and Zn were analysed by sequential extraction technique to evaluate the effects of drying and heating of dredged sediments from Lake Chungcho. The most abundant fraction of Cd, Cu, and Zn in the wet and untreated sediment was organic/sulfidic fraction that is state in reducing environment such as the bottom condition of Lake Chungcho, while Pb dominated in residual fraction. This means that the source of Cd, Cu, and Zn in the Chungcho lake sediment is related to the organic degradation and Pb to the erosion from surrounding rocks. With drying and oxidation by dredging, heating treatment, and disposal of the lake sediment, the chemical forms of studied metals changed greatly from organic/sulfidic fraction to adsorbed and reducible fractions which are more labile in oxygenated environment. Organic/sulfidic fraction of Cd, Cu and Pb in the wet sediment was transformed with drying and heating treatments to the labile ones like adsorbed and reducible fraction, but Zn to carbonate and reducible fraction. Heating of the sediment at $320^{\circ}C$ greatly increased the labile fraction of Cd and Cu, while that at $105^{\circ}C$ for Pb and Zn. It is believed that the increase in labile forms of heavy metals in the sediments by drying and heating is caused by the contact with oxygen during drying and heating and by the increase of pH of the pore water at the expense of organic/sulfidic fraction. It is concluded that the drying and oxidation currently used in the treatment of dredged sediment can increase labile forms of heavy metals in the sediment, and the potential of the metal availability from the sediment.

Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho (시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계)

  • 현문식;장인섭;박형수;김병홍;김형주;이홍금;권개경
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.252-259
    • /
    • 1999
  • Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

  • PDF

Measurement of Settling Velocity, Size and Density and Analysis of Fractal Dimension of Cohesive sediment (점착성 유사의 침강속도, 크기, 밀도 측정 플랙탈 차원 분석)

  • Son, Min-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • This study aims to investigate the settling velocity of aggregates of cohesive sediment (floc) and its relationship with sediment size, density and fractal dimension. A system of commercial camera and macro-lens is used for the experiment. Through the image-analysis technique, the image taken by the camera system is analyzed. For the experiment, kaolinite and a natural sediment sampled at Lake Apopka in Florida have been tested. From this study, it is known that kaolinite and Lake Apopka sediments show different behaviors mainly depending on the organic matter content. Samples of kaolinite with less organic contents show a more definite trend to follow a fractal theory and relatively strong relationships between the settling velocity, density, fractal dimension and floc size compared to the Lake Apopka sediments rich in organics.