• Title/Summary/Keyword: Lake Chuam

Search Result 3, Processing Time 0.018 seconds

우리나라 인공호의 부영양화 평가 및 예측에 관한 연구

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.441-450
    • /
    • 1998
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using VollenweiderGECD model and total phosphorus concentration and inflow rate which were measurded in 1993-1996. The results of study was as follows. The annual total phosphorus loading from the watershed was calculated to be 181-195tP /yr at lake Soyang, 591-680tP/yr at lake Chungju, 420-466tP/yr at lake Taechong, 229-278tP/yr at lake Andong, 103-106tP/yr at lake Hapchon, 57-59tP/yr at lake Imha, 194-244tP/yr at lake Namgang, 8386tP /yr at lake Chuam, 99-109tP /yr at lake Somjin. These are discharged, for the most parts, from population and ftshfarm facility. TP loading on the surface area at lake Soyang was 3.0lgP/$m^2$/yr, 2.82gP/$m^2$/yr, 2.84gP/$m^2$/yr, 3. 03gP/$m^2$/yr, at lake Chungju 7.91gP/$m^2$/yr, 6.87gP/$m^2$/yr, 7.38gP/$m^2$/yr, 7.l8gP/$m^2$/yr, at lake Taechong 6.7lgP/$m^2$/yr, 7.25gP/$m^2$/yr, 7.24gP/$m^2$/yr, 6.53gP/$m^2$/yr and TP loading on the surface area of Nakdong river basin, that is, lake Andong, Imha, Hapchon and Namgang were 5.39gP/$m^2$/yr, 4.47gP/$m^2$/yr, 4. 56gP/$m^2$/yr, 4.45gP/$m^2$/yr and 2.20gP/$m^2$/yr, 2.23gP/$m^2$/yr, 2.24gP/$m^2$/yr, 2.l7gP/$m^2$/yr and 4.50gP/$m^2$/ yr, 4.50gP/$m^2$/yr, 4.54gP/$m^2$/yr, 4.43gP/$m^2$/yr and 8.25gP/$m^2$/yr, 8.48gP/$m^2$/yr, 8.48gP/$m^2$/yr, 10. 39gP/$m^2$/yr respectively. Also those of lake Chuam was 2.51gP/$m^2$/yr, 2.61gP/$m^2$/yr, 2.52gP/$m^2$/yr, 2. 54gP/$m^2$/yr and TP loading on the surface area at lake Somjin was analysed 4.09gP/$m^2$/yr, 4.l0gP/$m^2$/yr, 3.98gP/$m^2$/yr,3.73gP/$m^2$/yr. The tropic states of nine lakes can be assessed as eutrophy because phosphorus loading exceeds the critical phosphorus loading by Vollenwelder-GECD model.

  • PDF

Fine Structure of Blue-green Algae, Microcystis aeruginosa Kutzing (남조(藍藻) Microcystis aeruginosa Kutzing의 미세구조(微細構造)에 관(關)한 연구(硏究))

  • Choi, Min-Kyu;Kim, Baik-Ho;Mun, Yeun-Ja;Chung, Yeun-Tai;Lee, Jong-Bin;Wui, In-Sun
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.389-399
    • /
    • 1996
  • In order to understand the morphological differences between two different organic loadings by its upstream, and to compare with other algal groups with references, the fine structure of blue-green algae, Microcystis aeruginosa Kitzing, taken from two branches, Tongbok and Bosung stream of Lake Chuam, Korea pennisula was examined. It showed extinct differences in most physicochemical factors between both branches, except water temperature and pH values. The concentrations of total phosphorus in Tongbok branch were twice as those of Bosung. M. aeruginosa cells were enumerated totally $1.2X10^4cells/ml$ and these individuals in branch of Tongbok were close to two times as much as Bosung. In light and electron microscopy, natural M. aeruginosa colonies formed irregular shape and non-directional array in amorphous matrix. They were consisted of many kinds of cells, youngs or olds in cell division, solitary, and various size of cells. Each cell ranged from 2.61 to $5.40{\mu}m$ in diameter, and averaged as $3.54{\pm}0.19{\mu}m$. In cytoplasm, they contained a number of inclusions in various size, shape and appearances. Among them, polyhedral bodies or carboxysomes, a structured granules, photosynthetic lamellae or thylakoids, and gas vacuoles were prominent and easy to recognize. Although it was failed to find the definable morphological variations in the ultrastructure of M. aeruginosa in terms of algal habitual environments, some useful characters were founded, outer layer of cell wall, polyhedral bodies and gas vacuoles, in blue-green algal classification and taxonomy.

  • PDF

A Study on Protection Plan of Eutrophication in Fresh Water Environment by Development of Methods for Algal Growth Potential test (I) -Morphology and Growth Characteristics of Isolated algae- (조류생산잠재력조사 방법개발에 의한 육수환경의 부영양화 방지대책에 관한 연구(I) -순수분리종의 형태 및 증식특성-)

  • 위인선;나철호;이종빈;주현수
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.18-27
    • /
    • 1997
  • The isolation, morphological study and growth characteristics of the algae were investigated from Lake Chuam. The isolated algae were applied the Agal Growth Potential test. The method of isolation and purification of the algae were used to Agar plating(AP), nutrient enrichment(NE), dilution(DI) and micro capillary technique(MC). Total isolated algae were 21 species. They were composed of Cyanophyceae, Dinophyceae, Bacillariophyceae, Euglenophyceae and Chlorophyceae. The numbers of algal strain by isolation technique were highest in dilution(21 species), and those of the rests were showed in order of NE > MC > AP. The sizes of isolated Selenastrum and Scenedesmus were $1.8\pm 1.4 \mu m$, $3.3\pm 0.9 \mu m$ in diameter and $6.4\pm 2.3 \mu m$, $13.6\pm 1.9 \mu m$ in length respectively. The morphology of isolated algae and NIES-collection strain was very similar each other, but the size was smaller isolated algae than that of NIES-collection. The optimum culture condition of isolated Selenastrum and Scenedesmus was about 30$\circ$C(25$\circ$C-35$\circ$C) in temperature and the maximum growth was appeared between 7,000 lux and 8,000 lux in the light intensity. The comparison of $\mu$(specific growth rate) on the concentration of nutrients such as nitrate and phosphate, isolated Selenastrum was appeared maximum it at 1.0 mg $NO_3-N/l$ but NIES-collection strain was showed 95% of maximum it at same nitrate concentration. Maximum g of isolated algae and NIES-collection strain in Scenedesmus onto nitrate concentration were very similar with the result of selenastrum. The specific growth rates of isolated algae and NIES-collection strain on the gradient concentration of phosphate were showed 0.72/day and 0.70/day at 0.02 mg $PO_4-P/l$ in Selenastrum but those of Scenedesmus were appeared 0.61/day and 0.57/day at same concentration $PO_4-P$.

  • PDF