• 제목/요약/키워드: Lagrangian dynamics

검색결과 112건 처리시간 0.029초

Influence of torsional rigidity of flexible appendages on the dynamics of spacecrafts

  • Chiba, Masakatsu;Magata, Hidetake
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.19-38
    • /
    • 2019
  • The influence of torsional rigidity of hinged flexible appendage on the linear dynamics of flexible spacecrafts with liquid on board was analyzed by considering the spacecraft's main body as a rigid tank, its flexible appendages as two elastically supported elastic beams, and the onboard liquid as an ideal liquid. The meniscus of the liquid free surface due to surface tension was considered. Using the Lagrangian of the spacecraft's main body (rigid tank), onboard liquid, and two beams (flexible appendages) in addition to assuming the system moved symmetrically, the coupled system frequency equations were obtained by applying the Rayleigh-Ritz method. The influence of the torsional rigidity of the flexible appendages on the spacecraft's coupled vibration characteristics was primary focus of investigation. It was found that coupled vibration modes especially that of appendage considerably changed with torsion spring parameter ${\kappa}_t$ of the flexible appendage. In addition, variation of the main body displacement with system parameters was investigated.

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

유체-입자 연성 운동에 의한 굽힘형 배관의 침식률 수치해석 (Numerical Simulation of Erosion Rate on Pipe Elbow Using Coupled Behavior of Fluid and Particle)

  • 장호상;이하원;황세윤;이장현
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.14-21
    • /
    • 2017
  • The erosion of solid particles in a pipe elbow was numerically investigated. A numerical procedure to estimate the sand erosion rate, as well as the particle motion, in the pipe elbow flow was introduced. This procedure was performed based on the combined empirical erosion model and computational fluid dynamics (CFD) analysis to consider the interaction between the particle motion and the eroded surface. The underlying turbulent flow on an Eulerian frame is described by the Reynolds averaged Navier-Stokes (RANS) equations with a $k-{\epsilon}$ turbulent model. The one-way coupled Eulerian-Lagrangian motion of the air flow and sand particles is employed to simulate the particle trajectories and particle-wall interactions on the pipe surfaces. The predicted CFD erosion magnitudes are compared with experimental data from pipe elbows. The erosion rate results do not reveal a good accordance between the simulation and experimental results. It seems that the CFD shows a slightly over-predicted erosion ratio.

휴머노이드 로롯팔의 물체 조작을 위한 지능형 거리 제어기 (Intelligent Distance Controller for Humanoid Robot Arms Handling a Common Object)

  • Bhogadi, Dileep K.;Cho, Hyun-Chan;Kim, Kwang-Sun;Wilson, Sara
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • The main object of this paper is concentrated on distance control of two robot arms of a humanoid using Fuzzy Logic Controller (FLC) for handling a common object. Serial Link Robot arms are widely used in most significantly in Humanoids serving for older people and also in various industrial applications. A method is proposed here that separates the interconnections between two robot arms so that the resulting model of two arms is decomposed into fuzzy logic based controller. The distance between two end effectors is always kept equal to that of the diameter of an object to be handled, so that the object would not fall down. Mathematical model of this system was obtained to simulate the behavior of serial robotic arms in close loop control before using fuzzy logic controller. Lagrangian equation of motion has been used to obtain the appropriate mathematical model of Robotic arms. The results are shown to provide some improvement over those obtained by more conventional means.

  • PDF

Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석 (Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model)

  • 서일원;박인환;김영도;한은진;추민호;문현생
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

타원형 날개에 대한 공동소음 예측 연구 (Study on Cavitation Noise Predictions for an Elliptic Wing)

  • 정승진;홍석윤;송지훈;권현웅;박일룡;설한신;김민재
    • 해양환경안전학회지
    • /
    • 제25권6호
    • /
    • pp.757-764
    • /
    • 2019
  • 수중에서 빠른 속도로 운동하는 물체 주변에서 감압이 발생하며, 이로 인해 공동 핵이 팽창함으로써 캐비테이션이 발생한다. 캐비테이션이 발생하게 되면 소음 및 진동이 증가하며, 추진기의 경우 추진 성능이 저해되는 악영향을 초래하기 때문에 이에 대한 예측이 필요하다. 본 연구에서는, 캐비테이션 발생으로 인한 공동소음의 해석절차를 정립하고, 타원형 날개에 적용하였다. 먼저 전산유체역학해석을 수행하여, 날개 형상 주위 유동장 정보를 도출하였다. 공동 핵 밀도 함수를 활용하여, 핵의 초기 반경 별로 개수를 계산하였고 이들을 압력 강하가 큰 날개 끝 전류에 랜덤하게 배치하였다. 이후 공동소음 해석을 위해 각각의 핵에 대하여 Lagrangian 관점에서 버블 다이나믹스를 활용하였고, 계산된 공동의 거동으로부터 소음해석을 수행하였다. 공동소음은 광대역 소음의 특성을 가지는 것을 확인하였으며, 최종적으로 선박해양플랜트연구소(KRISO)의 대형캐비테이션터널(LCT)에서 수행된 실험 계측결과와의 비교를 통해 검증을 수행하였다.

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.