• 제목/요약/키워드: Lagrangian dynamics

검색결과 112건 처리시간 0.022초

코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석 (Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger)

  • 이진운;장재성;이성혁
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

압전적층판의 열-압전-탄성 동적 비선형 작동특성 (Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates)

  • 오일권
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

반응기촉매 교체작업시 최적 환기조건에 대한 수치해석적 연구 (A numerical Study on Optimum Ventilation Conditions for the Task of Exchange Catalyst)

  • 윤장근;임용순;신미수
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.190-199
    • /
    • 2018
  • Objectives: The purpose of this case study is to assess the current airflow and find the ideal ventilation conditions in tank reactors for minimizing the possibility of exposure respiratory dusts(size of $2.5{\mu}m$, $10{\mu}m$) when workers exchange catalysts in the tank reactors. Methods: A Numerical study was performed to determine ideal ventilation conditions, We considered two sizes of airborne respiratory particles($2.5{\mu}m$, $10{\mu}m$) at 12points from the bottom of tank reactor. We changed input & output ventilation conditions and analyzed the particle motion in the tank reactor. The star-ccm+, computational fluid dynamics tool was used to predict air & particle flow patterns in the tank reactor and a numerical simulation was achieved by applying the realized ${\kappa}-{\varepsilon}$ turbulence model and the Lagrangian particle tracking method. Results: From the results, the increase of recirculation air had a significant impact on removing dusts because they are removed by HEPA filter. To the contrary, Increasing the clean air quantity or changing the input position of clean air is not good for workers because it causes the exit of respiratory dusts through workers' entrance or cause it to remail suspended in the air in the workplace tank.

곡 블록 자동화를 위한 지능형 용접 캐리지 개발 (Development of a Intelligent Welding Carriage for Automation of Curved Block)

  • 최희병;문종현;전완열;김세환
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.171-176
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, 1-7 (mm) and inclination, 0-30 (deg). Since available conventional carriage type is limited to use below root gap of 3 (mm), only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage. current, weaving speed, dwell time and travel speed, with respect to root gap and inclination to achieve good welding qualify. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verifying the trajectory tracking accuracy of end-effector.

  • PDF

해저 파문에서의 입자의 라그란지적 혼돈 및 확산 (Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed)

  • 김현민;서용권
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.13-24
    • /
    • 1993
  • 해양오염은 환경파괴의 주요 인자이다. 해양바닥에 가라않은 오염물질을 근본적으로 제거하는 문제와는 별도로, 파동(wave)에 의해 그것이 자동적으로확산될 수가 있다. 파문(ripple)으로 덮혀진 해저(sea bottom)에서 표면의 중력파에 의한 물의 수평방향 요동운동은 와류(vrotices)를 발생시칸다. 이런한 유동장은 해저 침전물을 부유시켜 멀리까지 화가신시키는 작용을 한다.파문주위의 유동장을 살펴보면 모서리(crest)에서 발생된 와류로 인해 정상유동성분이 존재하며 이런한 정상유동은 파문의 주기적 형상으로인해 다분히 순환적이다. 이ㅔ 파동에 의한 요동운동이 가세하면 Taylor 와류와 같은 효과를 보여 줄 것이다. 해저부근에서의 이러한 확산효과를 보기 위하여, 해양유동을 단순화하여 최근 널리 이용되고 있는 혼돈이론을 가미시켰다. 아주 단순한 유동이라도 복잡한 입자의 궤적을 나타내며 입자의 확산과 연관됨을 수치해석을 이용하여 보여준다.

  • PDF

댐 붕괴에 의한 토양 교란 시뮬레이션 (Simulation of Mobile-bed disturbance due to Large scale Wave)

  • 김경성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.210-211
    • /
    • 2018
  • 일반적인 댐 붕괴 시뮬레이션은 개수로 등 범람원을 대상으로 시뮬레이션 및 해석이 이루어졌다. 그러나 지속적인 이상기온 등으로 인하여 해안가 및 해양에서도 쓰나미 혹은 해일과 같은 규모가 큰 파가 발생하고 이에 따른 피해가 발생하고 있다. 규모가 크며 격렬한 파는 일반적인 전산유체역학 방식으로 해석이 가능은 하지만 자유표면의 대-변형 및 쇄파 등에 의한 비선형성의 시뮬레이션은 격자라는 한계에 의해 제한적으로 사용되어졌다. 이에 라그란지안 접근법을 이용한 입자법을 도입하여 댐 붕괴와 같은 격렬한 자유표면의 변동을 포함한 문제를 재현하였으며, 이러현 격렬한 파동에 의한 바닦면의 교란을 시뮬레이션 하였다.

  • PDF

제어모멘트자이로용 모멘텀휠의 동역학모델링과 진동분석 (Dynamics Modeling and Vibration Analysis of Momentum Wheel for the Control Moment Gyros)

  • 박종오;명현삼;이현재;방효충;추연규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.180-185
    • /
    • 2009
  • 우주비행체의 정밀 자세제어에 있어서 자세지향 및 안정성을 저해하는 구동기 교란의 효과는 매우 중요한 요소 중 하나라 할 수 있다. 최근 CMG는 그 구조의 복잡성에도 불구하고 반작용휠에 비교할 때 고출력 저중량이라는 장점에 근거하여 인공위성의 차세대 구동기로 많은 연구가 진행되고 있다. 정밀자세제어가 요구되는 인공위성의 구동기로 이용되기 위해서는 CMG가 위성 동체에 주게 될 교란력의 특성을 파악하는 것이 필수적이다. 본 논문에서는 CMG의 교란토크 및 교란력를 분석하기 위해 정적 동적 불균형을 가정하고, 라그랑지안 방법을 이용하여 해석적 모델을 유도하고 휠을 제작하여 진동을 분석하였다.

  • PDF

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.