• 제목/요약/키워드: Lagrangian Scheme

Search Result 159, Processing Time 0.019 seconds

EVALUATION ON TURBULENT MODEL IN LARGE EDDY SIMULATION OF TUHANNEL FLOW AROUND A WALL-MOUNTED CUBE IN A CHANNEL (채널 내 부착된 입방체 장애물 주위 유동에 관한 LES 난류모델의 영향 평가)

  • Park, N.S.;Ko, S.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.28-34
    • /
    • 2008
  • In engineering application of large eddy simulation, there are still questions as follows grid dependency on numerical results, the effect of upwind scheme against a calculation instability, appropriate boundary conditions dealing with turbulence fluctuation and the performance of SGS models. In this study, in order to develop the LES to the engineering application, large eddy simulation was carried out to investigate the effect of upwind scheme, turbulent subgrid model and the grid dependancy of the flow around a wall-mounted cube in a channel at Re=40,000 based on cubic height and bulk mean velocity. The computed velocities, turbulence quantities, separation and reattachment length were evaluated compared with the experimental results of R. Matinuzzi and C. Tropea.

Finite element analysis of wrinkling membranes (막 구조물의 유한요소해석)

  • Seokwoo Kang;Seyoung Im
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.176-183
    • /
    • 1996
  • A new iterative scheme is proposed for finite element analysis of wrinkling or tension structures. This enables us to update the stress state and the internal forces correctly taking into account the existence of wrinkling. The finite element implementation of the scheme is straightforward and simple, and only minor modifications of the existing total Lagrangian finite element codes for membranes are needed. The validity of the scheme is demonstrated via numerical examples for the torsion of a membrane and the quasi-static inflation of an automotive airbag, both made of isotropic or anisotropic elastic membranes

  • PDF

Parallel Procedure and Evaluation of Parallel Performance of Impact Simulation Based on Two-Step Eulerian Scheme (Two-Step Eulerian 기법에 기반 한 충돌 해석의 병렬처리 및 병렬효율 평가)

  • Kim Seung-Jo;Lee Min-Hyung;Paik Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1320-1327
    • /
    • 2006
  • Parallel procedure and performance of two-step Eulerian code have not been reported sufficiently yet even though it was developed and utilized widely in the impact simulation. In this study, parallel strategy of two-step Eulerian code was proposed and described in detail. The performance was evaluated in the self-made linux cluster computer. Compared with commercial code, a relatively good performance is achieved. Through the performance evaluation of each computation stage, remap is turned out to be the most time consuming part among the other part such as FE processing, communication, time marching etc.

Buffer Scheme Optimization of Epidemic Routing in Delay Tolerant Networks

  • Shen, Jian;Moh, Sangman;Chung, Ilyong;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.656-666
    • /
    • 2014
  • In delay tolerant networks (DTNs), delay is inevitable; thus, making better use of buffer space to maximize the packet delivery rate is more important than delay reduction. In DTNs, epidemic routing is a well-known routing protocol. However, epidemic routing is very sensitive to buffer size. Once the buffer size in nodes is insufficient, the performance of epidemic routing will be drastically reduced. In this paper, we propose a buffer scheme to optimize the performance of epidemic routing on the basis of the Lagrangian and dual problem models. By using the proposed optimal buffer scheme, the packet delivery rate in epidemic routing is considerably improved. Our simulation results show that epidemic routing with the proposed optimal buffer scheme outperforms the original epidemic routing in terms of packet delivery rate and average end-to-end delay. It is worth noting that the improved epidemic routing needs much less buffer size compared to that of the original epidemic routing for ensuring the same packet delivery rate. In particular, even though the buffer size is very small (e.g., 50), the packet delivery rate in epidemic routing with the proposed optimal buffer scheme is still 95.8%, which can satisfy general communication demand.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

3-D Analysis of Hot Forging Processes using the Mesh Compression Method (격자압축법을 이용한 3차원 열간단조공정해석)

  • 홍진태;양동열;이석렬
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.179-186
    • /
    • 2002
  • In the finite element analysis of metal forming Processes using general Lagrangian formulation, element nodes in the mesh move and elements are distorted as the material is deformed. The excessive degeneracy of mesh interrupts finite element analysis and thus increases the error of plastic deformation energy, In this study, a remeshing scheme using so-called mesh compression method is proposed to effectively analyze the flash which is generated usually in hot forging processes. In order to verify the effectiveness of the method, several examples are tested in two-dimensional and three-dimensional problems.

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF

Finite Element Analysis considering transformation plasticity for a welded structure (변태 소성을 고려한 용접 구조물의 유한 요소 해석)

  • 김주완;임세영
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.116-118
    • /
    • 2001
  • We propose an implicit numerical implementation for Leblond's transformation plasticity constitutive equations , which are widely used in welded steel structure. We apply Euler backward scheme rule to integrate the equations and determine the consistent tangent modulus. The implementation may be used with updated Lagrangian formulation. we test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

An Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation (Eulerian-Lagrangian 혼합모형에 의한 종확산 방정식의 수치해법)

  • 전경수;이길성
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.137-148
    • /
    • 1993
  • A hybrid finite difference method for the longitudinal dispersion equation was developed. The method is based on combining the Holly-Preissmann scheme with the fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme. Longitudinal dispersion of an instantaneously-loaded pollutant source was simulated by the model and other characteristics-based numerical methods. Computational results were compared with the exact solution. The present method was free from wiggles regardless of the Courant number, and exactly reproduced the location of the peak concentration. Overall accuracy of the computation increased for smaller value of the weighting factor, $\theta$ of the model. Larger values of $\theta$ overestimated the peak concentration. Smaller Courant number gave better accuracy, in general, but the sensitivity was very low, especially when the value of $\theta$ was small. From comparisons with the hybrid method using the third-degree interpolating polynomial and with split-operator methods, the present method showed the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

Post-buckling and Elasto-plastic Analysis of Shell Structures using the Degenerated Shell Element (변형된 쉘요소를 이용한 판 및 쉘 구조의 후좌굴 및 탄.소성 유한요소해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.17-27
    • /
    • 1995
  • For the post-buckling and elasto-plastic analysis of shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors in the iteration process and evaluating the total Green-Lagrange stain corresponding U total displacements. In the calculation of the stiffness matrix, the element formulation takes into account the effect of finite rotation increments by retaining second order rotation terms in the incremental displacement field. The selective or reduced integration scheme using the heterosis element is applied in order to overcome both shear locking phenomena and the zero energy mode. The load/displacement incremental scheme is adopted for geometric non-linear F .E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references's results.

  • PDF