• Title/Summary/Keyword: Lagrangian Relaxation Method

Search Result 36, Processing Time 0.024 seconds

Optimal channel allocation for cellular mobile system with nonuniform traffic distribution

  • Kim, Sehun;Chang, Kun-Nyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.303-312
    • /
    • 1994
  • The problem of optimally allocating available communication channels in a cellular mobile system with nonuniform traffic distribution is considered. This problem is to minimize the weighted average blocking probability subject to cochannel interference constraints. We use the concept of pattern to deal with the problem more conveniently. Using Lagrangian relaxation and subgradient optimization techniques, we obtain high-quality solutions with information about their deviations from true optimal solutions. Computational experiments show that our method works very well.

A zonal hybrid approach coupling FNPT with OpenFOAM for modelling wave-structure interactions with action of current

  • Li, Qian;Wang, Jinghua;Yan, Shiqiang;Gong, Jiaye;Ma, Qingwei
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.381-407
    • /
    • 2018
  • This paper presents a hybrid numerical approach, which combines a two-phase Navier-Stokes model (NS) and the fully nonlinear potential theory (FNPT), for modelling wave-structure interaction. The former governs the computational domain near the structure, where the viscous and turbulent effects are significant, and is solved by OpenFOAM/InterDyMFoam which utilising the finite volume method (FVM) with a Volume of Fluid (VOF) for the phase identification. The latter covers the rest of the domain, where the fluid may be considered as incompressible, inviscid and irrotational, and solved by using the Quasi Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). These two models are weakly coupled using a zonal (spatially hierarchical) approach. Considering the inconsistence of the solutions at the boundaries between two different sub-domains governed by two fundamentally different models, a relaxation (transitional) zone is introduced, where the velocity, pressure and surface elevations are taken as the weighted summation of the solutions by two models. In order to tackle the challenges associated and maximise the computational efficiency, further developments of the QALE-FEM have been made. These include the derivation of an arbitrary Lagrangian-Eulerian FNPT and application of a robust gradient calculation scheme for estimating the velocity. The present hybrid model is applied to the numerical simulation of a fixed horizontal cylinder subjected to a unidirectional wave with or without following current. The convergence property, the optimisation of the relaxation zone, the accuracy and the computational efficiency are discussed. Although the idea of the weakly coupling using the zonal approach is not new, the present hybrid model is the first one to couple the QALE-FEM with OpenFOAM solver and/or to be applied to numerical simulate the wave-structure interaction with presence of current.

A FINITE-VISCOELASTIC CONTINUUM MODEL FOR RUBBER AND ITS FINITE ELEMENT ANALYSIS

  • Kim, Seung-Jo;Kim, Kyeong-Su;Cho, Jin-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.97-109
    • /
    • 1995
  • In this paper, a finite viscoelastic continuum model for rubber and its finite element analysis are presented. This finite viscoelatic model based on continuum mechanics is an extended model of Johnson and Wuigley's 1-D model. In this extended model, continuum based kinematic measures are rigorously defied and by using this kinematic measures, elastic stage law and flow rule are introduced. In kinematics, three configuration are introduced. In kinematics, three configuration are introduced. They are reference, current and virtual visco configurations. In elastic state law, it is assumed that at a certain time, there exists an elastic potential which describes the recoverable elastic energy. From this elastic potential, elastic state law is derived. The proposed flow rule is based on phenomenological observation. The flow rule gives precise relaxation response. In finite element approximation, mixed Lagrangian description is used, where total and similar method of updated Lagrangian descriptions are used together. This approach reduces the numerical job and gives simple nonlinear syatem of equations. To satisfy the incompressible condition, penalty-type modified Mooney-Rivlin energy function is adopted. By this method nearly incompressible condition is obtain the virtual visco configuration. For verification, uniaxial stretch tests are simulated for various stretch rates. The simulated results show good agreement with experiments. As a practical experiments. As a preactical example, pressurized rubber plate is simulated. The result shows finite viscoelastic effects clearly.

Unit Commitment Considering Operation of Energy Constrained Units (에너지제약을 갖는 발전기의 운전을 고려한 기동정지계획에 관한 연구)

  • Song, K.Y.;Lee, B.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.117-119
    • /
    • 1993
  • This paper presents a new method for solving unit commitment problem including hydro and pumped storage hydro units in a large scale power system. The proposed method makes it possible to get variable power of hydro and pumped storage hydro units and results in the better unit commitment with good convergency. Moreover this paper proposes an unit commitment algorithm to consider variable power of these units effectively by Lagrangian Relaxation method. By applying the proposed method to the test system, it is verified the usefulness of this method.

  • PDF

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

Hybrid Genetic Algorithm or Obstacle Location-Allocation Problem

  • Jynichi Taniguchi;Mitsuo Gen;Wang, Xiao-Dong;Takao Yokota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.191-194
    • /
    • 2003
  • Location-allocation problem is known as one of the important problem faced in Industrial Engineering and Operations Research fielde. There are many variations on this problem for different applications, however, most of them consider no obstacle existing. Since the location-allocation problem with obstacles is very complex and with many infeasible solutions, no direct method is effective to solve it. In this paper we propose a hybrid Genetic Algorithm (hGA) method for solving this problem. The proposed hGA is based on Lagrangian relaxation method and Dijkstra's shortest path algorithm. To enhance the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  • PDF

정수계획법을 이용한 프로젝트 확장순서결정에 관한 연구

  • Gang Seok-Ho;Kim Ji-Seung
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.2
    • /
    • pp.15-22
    • /
    • 1985
  • Planning for the expansion of production capacity is of vital importance in many applications within the private and public sectors. This paper considers a sequencing expansion problem in which capacity can be added only at discrete points in time. Given the demand forecast of each period, capacity and cost of each expansion project, we are to determine the sequence of expansion necessary to provide sufficient capacity to meet the demand in all periods at minimum cost. This problem is formulated as a pure integer programming and solved by branch and bound method using Lagrangian relaxation. At first, simple sequencing expansion problem is presented, and in the latter part, extension to include precedence between projects is suggested.

  • PDF

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

A complexity analysis of a "pragmatic" relaxation method for the combinatorial optimization with a side constraint (단일 추가제약을 갖는 조합최적화문제를 위한 실용적 완화해법의 계산시간 분석)

  • 홍성필
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • We perform a computational complexity analysis of a heuristic algotithm proposed in the literature for the combinatorial optimization problems extended with a single side-constraint. This algorithm, although such a view was not given in the original work, is a disguised version of an optimal Lagrangian dual solution technique. It also has been observed to be a very efficient heuristic producing near-optimal solutions for the primal problems in some experiments. Especially, the number of iterations grows sublinearly in terms of the network node size so that the heuristic seems to be particularly suitable for the applicatons such as routing with semi-real time requirements. The goal of this paper is to establish a polynomal worst-case complexity of the algorithm. In particular, the obtained complexity bound suports the sublinear growth of the required iterations.

  • PDF

A Mathematical Model and an Algorithm for Dimensioning Problem of B-ISDN Extension (B-ISDN 확장 시 링크용량 설계 모형 및 알고리듬에 관한 연구)

  • 주종혁
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.62
    • /
    • pp.11-20
    • /
    • 2001
  • At the initial deployment of B-ISDN, the heterogeneity of services and the bandwidth requirement make dimensioning of B-ISDN much more complicated than the dimensioning of homogeneous circuit or packet switched networks. Therefore B-ISDN must be extended gradually according to future telecommunication technology or service demands. In this paper, we propose a mathematical formulation for dimensioning problem of B-ISDN extension, considering the characteristics of ATM(Asynchronous Transfer Mode) such as various quality of services, the statistical multiplexing effects of VPCs(Virtual Path Connections) and the modularity of transmission links allocated when new B-ISDN nodes are given. The algorithm based on the simultaneous linear approximation technique and Lagrangian relaxation method and some numerical results are also presented.

  • PDF