• Title/Summary/Keyword: Lagrange polynomial

Search Result 47, Processing Time 0.019 seconds

On a Substructure Synthesis Having Non-Matching Nodes (비부합 절점으로 이루어진 구조물의 합성과 재해석)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF

Decimation Chain Modeling for Dual-Band Radio Receiver and Its Operation for Continuous Packet Connectivity

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.235-240
    • /
    • 2015
  • A decimation chain for multi-standard reconfigurable radios is presented for 900-MHz and 1,900-MHz dual-band cellular standards with a data interpolator based on the Lagrange method for adjusting the variable data rate to a fixed data rate appropriate for each standard. The two proposed configurations are analyzed and compared to provide insight into aliasing and the signal bandwidth by means of a newly introduced measure called interpolation error. The average interpolation error is reduced as the ratio of the sampling frequency to the signal BW is increased. The decimation chain and the multi-rate analog-to-digital converter are simulated to compute the interpolation error and the output signal-to-noise ratio. Further, a method to operate the above-mentioned chain under a compressed mode of operation is proposed in order to guarantee continuous packet connectivity for inter-radio-access technologies. The presented decimation chain can be applied to LTE, WCDMA, GSM multi-mode multi-band digital front-end which will ultimately lead to the software-defined radio.

A Study on the Elimination of ECG Artifact in Polysomnographic EEG and EOG using AR model (AR 모델을 이용한 수면중 뇌파 및 안전도 신호에서의 심전도 잡음 제거에 관한 연구)

  • Park, H.J.;Han, J.M.;Jeong, D.U.;Park, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.459-463
    • /
    • 1997
  • In this paper, we present the elimination of ECG artifact from the polysomnographic EEG and EOG. The idea of this method is that the ECG synchronized EEG segment is detected from ECG and regard samples of that segment a missing signal. After this, we used two interpolation methods to recover the missing segment. One is the Lagrange Polynomial Interpolation Method and the other is the Least Square Error AR Interpolation method. We tested those methods by applying to simulated signals. AR methods works well enough to reject the artifact about 10% of the main artifact level. We practically applied to real EEG and EOG signals. We also developed the algorithm to detect whether the artifact level is high or not. If the artifact level is high, then the interpolations are applied.

  • PDF

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

A DECISION-MAKER CONFIDENCE LEVEL BASED MULTI-CHOICE BEST-WORST METHOD: AN MCDM APPROACH

  • SEEMA BANO;MD. GULZARUL HASAN;ABDUL QUDDOOS
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.257-281
    • /
    • 2024
  • In real life, a decision-maker can assign multiple values for pairwise comparison with a certain confidence level. Studies incorporating multi-choice parameters in multi-criteria decision-making methods are lacking in the literature. So, In this work, an extension of the Best-Worst Method (BWM) with multi-choice pairwise comparisons and multi-choice confidence parameters has been proposed. This work incorporates an extension to the original BWM with multi-choice uncertainty and confidence level. The BWM presumes the Decision-Maker to be fully confident about preference criteria vectors best to others & others to worst. In the proposed work, we consider uncertainty by giving decision-makers freedom to have multiple choices for preference comparison and having a corresponding confidence degree for each choice. This adds one more parameter corresponding to the degree of confidence of each choice to the already existing MCDM, i.e. multi-choice BWM and yields acceptable results similar to other studies. Also, the consistency ratio remained low within the acceptable range. Two real-life case studies are presented to validate our study on proposed models.

Three-Dimensional Vibration Analysis of Rectangular Laminated Composite Plates with Combination of Clamped and Free Boundary Conditions (고정과 자유경계조건의 조합을 고려한 직사각형 복합적층판의 3차원 진동해석)

  • Kim, Joo woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.161-171
    • /
    • 2006
  • paper presents the results of a three-dimensional study of the natural vibration of laminated composite rectangular plates with various combinations of clamped and free boundaries. The Ritz method was used to obtain the stationary values of the associated Lagrangian, with displacements approximated using mathematicaly complete, characteristic orthogonal polynomials. The correctness of the three-dimensional model was established through a convergence study of the non-dimensional frequencies, followed by a comparison of the analytical findings in the existing literature. The wide scope of additional three-dimensional frequency results explains the influence of a number of geometrical and material parameters for angle-ply and cross-ply laminated plates, namely aspect ratio (${\mathcal{a/b}}$), thickness ratio (${\mathcal{a/h}}$), orthotropy of material, number of plies (${\mathcal{N}}$), fiber orientation angle (${\theta}$), and stacking sequence.