• Title/Summary/Keyword: Lag phase

Search Result 411, Processing Time 0.034 seconds

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy (주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법)

  • Park, Kyung Bae;Chung, Jae Hun;Hwang, Gwang Seok;Jung, Eui Han;Kwon, Oh Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.957-962
    • /
    • 2014
  • We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

Prediction of Listeria monocytogenes Growth Kinetics in Sausages Formulated with Antimicrobials as a Function of Temperature and Concentrations

  • Bang, Woo-Suk;Chung, Hyun-Jung;Jin, Sung-Sik;Ding, Tian;Hwang, In-Gyun;Woo, Gun-Jo;Ha, Sang-Do;Bahk, Gyung-Jin;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1316-1321
    • /
    • 2008
  • This study was conducted to develop a model to describe the effect of antimicrobials [potassium sorbate (PS), potassium lactate (PL), and combined PL and sodium diacetate (SDA, PLSDA)] on the growth parameters of Listeria monocytogenes such as specific growth rate (SGR) and lag phase periods (LT) in air-dried raw sausages as a function of storage temperature (4, 10, 16, and $25^{\circ}C$). Results showed that the SGR of L monocytogenes was dependent on the storage temperature and level of antimicrobials used. The most effective treatment was the 4% PLSDA, followed by the 2% PLSDA and 4% PL and 0.2% PS exhibited the least antimicrobial effect. Increased growth rates were observed with increasing storage temperatures from 4 to $25^{\circ}C$. The growth data were fitted with a Gompertz equation to determine the SGR and LT of the L. monocytogenes. Six polynomial models were developed for the SGR and LT to evaluate the effect of PS (0.1, 0.2%) and PL (2,4%) alone and PLSDA (2, 4%) on the growth kinetics of L. monocytogenes from 4 to $25^{\circ}C$.

Investigation on the Microbiological and Biochemical Properties of Kimchi in the Solid-state Model System Designed for Fermented Sausages

  • Lee, Joo-Yeon
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.236-242
    • /
    • 2010
  • The objective of this study was to investigate the potential of the application of kimchi LAB as starter culture in the production of fermented sausages. For this, the solid-state model media composed to simulate the substantial conditions of meat mixtures were fermented for 120 h after the treatment with different concentrations of kimchi (0.5, 1.0, 1.5, 3.0, and 5.0%) and lyophilized kimchi-powder (0.2 % and 0.5%). During the fermentation period, the growth of total viable cells and LAB, and the changes of pH and titratable acidity were investigated. The initial LAB counts ranged from 7.18 to 8.34 Log CFU/ mL for kimchi media and from 6.93 to 6.94 Log CFU/mL for kimchi-powder media depending on the added concentrations. The kimchi LAB in this study were not influenced by the immobilized condition for their adaptation and growth by showing no lag phase and thus acted similar as in the submerged medium. The initially increased counts reached around 9 Log CFU/ mL in 12 h independent of the concentrations of a ded kimchi. However, the growth and metabolic activity of kimchi-powder LAB were influenced by the immobilized condition. Supposedly, as the nutrient supply in solid-state depended solely on diffusion, these differences in the souring properties were caused by the LAB topography in the medium matrix. Nevertheless, the differences in the numbers of LAB between two media were less than 0.5 Log units and the pH drop in the solidstate batches was quite rapid and reached low values. Therefore, it can be assumed that kimchi and kimchi-powder LAB showed the utility as the substitute of commercial starter culture even without a rehydrating pretreatment.

The Effects of Solvent Fractions of Kimchi on Plasma Lipid Concentration of Rabbit Fed High Cholesterol Diet (김치의 용매획분이 고콜레스테롤 식이를 섭취한 토끼의 혈중지질 농도 변화에 미치는 영향)

  • 송영옥;황지원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.204-210
    • /
    • 2000
  • The antioxidative effects of solvent fractions of kimchi on LDL oxidatiojn in vitro as well as hypolipidemic effects of these fractions in rabbit fed atherogenic diet were studied. Methanol extract of deffated kimchi was fractionated sequentially with dichloromethane, ethylacetate, butanol and water. All solvent fractions of kimchi inhibited Cu2+-induced LDL oxidation. Among these fractions, the dicholoromethane fraction at the concentration of 25$\mu\textrm{g}$/mL showed the highest antioxidant effects against LDL oxidation in the aspect of inhibiting TBARS production by 28.03% or prolonged lag phase duration 2-fold compared to those of control. Based on the results from in vitro study, New Zealand White Rabbits grouped six each were fed for 8 weeks either basal diet containing 1% cholesterol or experimental diet containing dichloromethane, ethylacetate or water fraciton added to the basal diet. The amount of solvent fraction of kimchi added to the experimental diet was equivalent to 5% of freeze-dried kimchi. The hypolipidemic effects was observed from all experimental gropus, especially from dichloromethane fraction added group. The plasma and LDL cholesterol levels of this group were decreased by 49% and 47%, respectively while that of HDL increased by 91% compared to those of control. The calculated atherogenic index for the dichloromethane group was the lowest among groups. However, TG lowering effect of experimental group was not observed since solbent fraction of kimchi was used instead of freeze-dried kimchi. The TBARS concentration of LDL isolated from rabbit fed dichloromethane fraction was decreased 21% than that of control. These results indicate that active principles responsible for inhibiting LDL oxidation and lowering plasma cholesterol may present abundantly in dichloromethane fraction of kimchi.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Evaluation of Low-temperature Thermal Pre-treatment and Biogas Characteristics using Waste Activated Sludge (잉여슬러지를 이용한 저온 열적전처리 및 바이오 가스 특성 평가)

  • Choi, Jae-Hoon;Jeong, Seong-Yeob;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.299-307
    • /
    • 2019
  • The purpose of this study was to investigate the effect of low temperature thermal pre-treatment on biodegradation of waste activated sludge for anaerobic digestion as a countermeasure for increasing sludge generation. The experimental condition was accomplished in 2 %, 4 %, and 6 % TS concentration, and $70^{\circ}C$, $80^{\circ}C$, $90^{\circ}C$ of temperature for a maximum of 120 minutes retention time. Then, it was followed by analysis of physical/chemical properties, BMP test and composition of biogas. The biogas characteristic was evaluated by applying the modified Gomperz model. As a result, solubility of dissolved substrate, such as $SCOD_{Cr}$, soluble carbohydrate, and soluble protein, and biogas production increased as temperature increased. Solubilization efficiency at $90^{\circ}C$ was 18.4 %, 17.03 % and 16.88% in 2 %, 4 %, and 6 % TS concentration respectively. Also, solubilization rates of carbohydrate and protein similarly increased. BMP test results also showed that methane production in excess sludge increased to 0.194, 0.187 and $0.182m^3/kg$ VS. respectively, and lag phase decreased to 0.145, 0.220, 0.351 day due to acceleration of the hydrolysis step. Consequently, low-temperature thermal pre-treatment could increase biodegradability of sludge, positively affecting biogas production and sludge reduction.

Prevalence and Kinetic Behavior of Escherichia coli in Smoked Duck at Changing Temperature

  • Park, Eunyoung;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Kang, Joohyun;Oh, Hyemin;Kim, Joo-Sung;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.504-509
    • /
    • 2021
  • The objective of this study was to develop dynamic model to describe the kinetic behavior of E. coli in sliced smoked duck. E. coli was detected in 2 sliced smoked duck samples (16.7%) at 1.23 log CFU/g. The maximum specific growth rate (𝜇max) of E. coli ranged from 0.05 to 0.36 log CFU/g/h, and lag phase duration (LPD) ranged from 4.39 to 1.07 h, depending on the storage at 10-30℃, and h0 value ranged from 0.24 to 0.51. The developed model was validated with observed values obtained at 13℃ and 25℃. The model performance was appropriate with 0.130 of root mean squared error (RMSE), and the dynamic model also described properly kinetic behavior of E. coli in sliced smoked duck samples. These results indicate that E. coli can contaminate sliced smoked ducks and the models developed with the E. coli isolates are useful in describing the kinetic behavior of E. coli in sliced smoked duck.

Bioremoval of Cadmium(II), Nickel(II), and Zinc(II) from Synthetic Wastewater by the Purple Nonsulfur Bacteria, Three Rhodobacter Species

  • Jin Yoo;Eun-Ji Oh;Ji-Su Park;Deok-Won Kim;Jin-Hyeok Moon;Deok-Hyun Kim;Daniel Obrist;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.640-648
    • /
    • 2023
  • The purpose of this study was to determine the inhibitory effect of heavy metals [Cd(II), Ni(II), and Zn(II)] on the growth of Rhodobacter species (Rhodobacter blasticus, Rhodobacter sphaeroides, and Rhodobacter capsulatus) and their potential use for Cd(II), Ni(II), and Zn(II) bioremoval from liquid media. The presence of toxic heavy metals prolonged the lag phase in growth and reduced biomass growth for all three Rhodobacter species at concentrations of Cd, Ni, and Zn above 10 mg/L. However, all three Rhodobacter species also had a relatively high specific growth rate against each toxic heavy metal stress test for concentrations below 20 mg/L and possessed a potential bioaccumulation ability. The removal efficiency by all strains was highest for Cd(II), followed by Ni(II), and lowest for Zn(II), with the removal efficiency of Cd(II) by Rhodobacter species being 66% or more. Among the three strains, R. blasticus showed a higher removal efficiency of Cd(II) and Ni(II) than R. capsulatus and R. sphaeroides. Results also suggest that the bio-removal processes of toxic heavy metal ions by Rhodobacter species involve both bioaccumulation (intracellular uptake) and biosorption (surface binding).

Sea Level Variability at a Synoptic Band along the East Coast of Korea and its Causal Mechanism (한국 동해연안의 종관주기 해수면 변동 특성과 발생원인)

  • Jung, Sung-Yun;Yun, Jae-Yul;Park, Tae-Wook;Lim, Se-Han;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.89-105
    • /
    • 2008
  • Sea level and atmospheric pressure data of 1999-2005 from four stations along the Korean east coast were analyzed to understand the sea level variability and its causal mechanism. The results of the wavelet and the auto-spectrum analyses indicate that the sea level fluctuations of 3-17 day period are statistically significant at the 95% confidence level, especially in spring to early summer. In this period, the coherency between the sea levels and the atmospheric pressures in a cross-spectrum is high, implying the importance of an inverted barometric effect in generation of the sea level fluctuations. To learn about the sea level variability, the cross-spectrum analyses were applied between the sea levels of the adjacent stations. The results show a case of southward phase propagations along the coast, as in 1999, 2003 and 2005, and an another case of no progressive phase lags between the stations, as in 2000-2002, and 2004. The phase speed in the former case is 12-15 m/s, which is a commonly observed phase speed of coastal Kelvin waves. Generation of such fluctuations seems to be related to low pressure cells developed in the Asian continent in spring and summer and moving eastward over the coastal region north of the stations. The latter case of no progressive phase lag, however, occurs when the low pressure cells developed in the continent move along the region south of the stations. In this case, the northeastward phase propagation with a speed of 5-8 m/s is observed along the southwestern coast of Japan.

Importance of Strain Improvement and Control of Fungal cells Morphology for Enhanced Production of Protein-bound Polysaccharides(β-D-glucan) in Suspended Cultures of Phellinus linteus Mycelia (Phellinus linteus의 균사체 액상배양에서 단백다당체(β-D-glucan)의 생산성 향상을 위한 균주 개량과 배양형태 조절의 중요성)

  • Shin, Woo-Shik;Kwon, Yong Jung;Jeong, Yong-Seob;Chun, Gie-Taek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.220-229
    • /
    • 2009
  • Strain improvement and morphology investigation in bioreactor cultures were undertaken in suspended cultures of Phellinus linteus mycelia for mass production of protein-bound polysaccharides(soluble ${\beta}$-D-glucan), a powerful immuno-stimulating agent. Phellineus sp. screened for this research was identified as Phellinus linteues through ITS rDNA sequencing method and blast search, demonstrating 99.7% similarity to other Phellinus linteus strains. Intensive strain improvement program was carried out by obtaining large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because large numbers of protoplasts ($1{\times}10^5{\sim}10^6\;protoplasts/ml$) formed using the banding filtration method with the cell wall-disrupting enzymes could be regenerated in relatively high regeneration frequency($10^{-2}{\sim}10^{-3}$) in the newly developed regeneration medium. It was demonstrated that the strains showing high performances in the protoplast regeneration and solid growth medium were able to produce 5.8~6.4%(w/w) of ${\beta}$-D-glucan and 13~15 g/L of biomass in stable manners in suspended shake-flask cultures of P. linteus mycelia. In addition, cell mass increase was observed to be the most important in order to enhance ${\beta}$-D-glucan productivity during the course of strain improvement program, since the amount of ${\beta}$-D-glucan extracted from the cell wall of P. linteus mycelia was almost constant on the unit biomass basis. Therefore we fully investigated the fungal cell morphology, generally known as one of the key factors affecting cell growth extent in the bioreactor cultures of mycelial fungal cells. It was found that, in order to obtain as high cell mass as possible in the final production bioreactor cultures, the producing cells should be proliferated in condensed filamentous forms in the growth cultures, and optimum amounts of these filamentous cells should be transferred as active inoculums to the production bioreactor. In this case, ideal morphologies consisting of compacted pellets less than 0.5mm in diameter were successfully induced in the production cultures, resulting in shorter period of lag phase, 1.5 fold higher specific cell growth rate and 3.3 fold increase in the final biomass production as compared to the parallel bioreactor cultures of different morphological forms. It was concluded that not only the high-yielding but also the good morphological characteristics led to the significantly higher biomass production and ${\beta}$-D-glucan productivity in the final production cultures.