• Title/Summary/Keyword: Lactococcus

Search Result 302, Processing Time 0.04 seconds

Production of Set-type Yogurt Fortified with Peptides and γ-aminobutyric acid by Mixed Fermentation Using Bacillus subtilis and Lactococcus lactis (혼합발효를 통한 γ-aminobutyric acid와 펩타이드가 강화된 호상 요구르트 제조)

  • Lim, Jong-Soon;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.165-172
    • /
    • 2014
  • Mixed fermentation of cow milk was performed by sequential co-cultures with Bacillus subtilis and Lactococcus lactis. After a first fermentation step with B. subtilis for 6 h, the number of viable cells increased to $2.5{\times}10^8$ CFU/mL. The second fermentation step with L. lactis resulted in increased viable cells $1.09{\times}10^{10}$ CFU/mL for 3 days and increased acidity. However, the number of viable B. subtilis cells was decreased greatly to $5{\times}10^1$ CFU/mL following fermentation with L. lactis. Milk proteins were markedly hydrolyzed by the first fermentation after 2 h, and the second fermentation induced curd formation in milk. However, after 4 h, the first fermentation resulted in higher whey separation and 80 mg% tyrosine content. Gamma-aminobutyric acid (GABA) production was dependent upon the degree of protein hydrolysis by first fermentation. Second fermentation resulted in 0.14% GABA. The milk fermented by B. subtilis indicated the rough surface of yogurt depended upon the degree of protein hydrolysis. In conclusion, set-type yogurt was efficiently produced by co-culturing of milk, and fortifying with peptides, GABA, and probiotics.

Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria (Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효)

  • Shim, Young-Sup;Kim, Jae-Won;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.161-167
    • /
    • 1998
  • Whey is by-product from natural cheese manufacturing process. For alcoholic fermentation, the initial lactose content and pH were adjusted to 4.5% and 4.2, respectively. Two strains of yeasts (Kluyveromyces marxianus, Saccharomyces cerevisiae) and seven strains of lactic acid bacteria (Lactobacillus brevis, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus lactis, Leuconostoc cremoris, Lactococcus lactis and Streptococcus thermophilus) were examined for their alcohol production and sensory acceptability. Ethanol content in the whey fermented by lactose-fermenting K. marxianus was 2.8% at 4th day of incubation and that fermented by nonlactose fermenting S. cerevisiae was 0.2%. In case of mixed fermentation with yeasts and tactic acid bacteria (LAB being inoculated at 0 hr), the maximum ethanol production was obtained in the sample inoculated at 16 hr by s. cerevisiae, and in the sample inoculated at 24 hr by K. marxianus. The optimum temperature was $37^{\circ}C$ for alcohol production under static condition. The production of $CO_2$ gas was higher in the whey fermented by K. marxianus (1.88%) than by S. cerevisiae (0.04%). The titratable acidity of the whey gradually increased with fermentation time and its content was 0.39% at 4th day of fermentation by K. marxianus and 0.52% by S. cerevisiae. Among seven strain of latic acid bacteria tested, Lactococcus lactis exerted synergistic effect for acid production with K. marxianus. Therefore, overall results suggestd that the combination of Lactococcus lactis and K. marxianus was best choice in fermenting cheese whey for edible purpose.

  • PDF

Production of Lactococcal Bacteriocin using Repeated-Batch and Continuous Cultures

  • Yoo, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.284-287
    • /
    • 1992
  • Repeated-batch and continuous cultures of Lactococcus sp. 1112-1 were carried out for bacteriocin production using a glucose-casein medium. Repeated-batch culture did not efficiently enhanced the bacteriocin production. Continuous production was possible at the dilution rate of 0.4 $h^{-1}$. Maximum specific production rate ($Q^p$), bacteriocin production and biomass at the dilution rate were 347, 136 IU/g/h, 2, 121 IU/ml and 2.45 g/L, respectively.

  • PDF

어병 세균 Lactococcus garvieae KG- 균주 특이 단백질 생산 유전자의 해석

  • 박찬일;박수일
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.447-448
    • /
    • 2000
  • 연쇄구균증은 1974년 일본 방어(Seriola quinqueradiata) 양어장에서 처음 발생 보고된 이래 우리 나라에서도 매년 하절기를 중심으로 전국 각지의 양어장에 큰 경제적 손실을 입히는 중요한 어병 세균으로 알려져 있다(Kusuda et al. 1976, Kitao et al. 1979), 본 균의 혈청형에 대해서는 KG7409(Kusuda, 1974) 균주의 항혈청에 대하여 응집 반응을 보이는 균을 KG+, 응집 반응이 일어나지 않는 균주를 KG-로 구분하고 있다. (중략)

  • PDF

Microbiological Characteristics and Cytoprotective Effects of Samjung-Hwan Fermented by Lactic Acid Bacteria (유산균을 이용한 발효삼정환의 미생물 특성 및 세포 보호 효과)

  • Chang, Seju;Wang, Jing-Hua;Shin, Na Rae;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives: To confirm microbiological change and cytoprotective effect of Samjung-hwan (SJH) which fermented by Lactic acid bacteria from natural fermented SJH. Methods: SJH was fermented by Lactobacillus brevis and Lactococcus lactis subsp. lactis from natural fermented SJH. After 1 week of fermentation, we analysed pH and microbial profiling. We also performed measuring total polyphenol total flavonoid contents and 1,1-Diphenyl-2-picryhydrazyl (DPPH) free radical scavenging activity to investigate antioxidant ability. Cell viability was performed by using HepG2 cell. Results: pH of lactic acid bacteria inoculated group and non-inoculated group was decreased and total counts of lactic acid bateria for both group was increased after fermentation of SJH. Total polyphenol and flavonoid contents and DPPH free radical scavenging activity was increased in both group. Total polyphenol contents of lactic acid bacteria Inoculated group is more increased than non-inoculated group. HepG2 cell viability was increased in both group. Conclusions: SJH fermentd by Lactobacillus brevis and Lactococcus lactis subsp. lactis shows change in microbiological character and has cytoprotective effect. Further studies are required for investigating function of lactic acid bacteria during fermentation of SJH.

Microbial diversity and physicochemical properties of takju and yakju (탁주와 약주의 이화학적 특성 및 미생물 군집 분석)

  • Koo, Ok Kyung;Lim, Eun Seob;Lee, Ae-Ran;Kim, Tae Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.400-406
    • /
    • 2018
  • Takju and yakju are traditional Korean alcoholic beverages that are prepared by fermentation of glutinous rice with nuruk, a cereal starter containing various bacteria, fungi, and yeast. In this study, physicochemical and microbial properties of a total of 12 commercial takju and yakju samples were analyzed; their pH, sweetness, and alcohol content were varied, depending on the type of alcohol, from pH 3.64-4.8, $5.1-24.8^{\circ}Bx$, and 4.6-18.5%, respectively. Microbial communities were analyzed with 16S rRNA amplicon sequencing using MiSeq system. At the phylum level, Firmicutes (86.2%) was the most dominant, followed by Proteobacteria (8.08%), Actinobacteria (2.56%), and Cyanobacteria (3.13%). Lactic acid bacteria, including Lactobacillus, Lactococcus, Leuconostoc, and Weissella were also frequently detected. Among eukaryotes, Saccharomyces cerevisiae was the most dominant in these samples.

Bacterial Diversity in the Guts of Sea Cucumbers (Apostichopus japonicus) and Shrimps (Litopenaeus vannamei) Investigated with Tag-Encoded 454 Pyrosequencing of 16S rRNA Genes (16S rRNA 유전자의 454 파이로서열 분석을 이용한 해삼(Apostichopus japonicas)과 새우(Litopenaeus vannamei)의 장내 세균의 다양성 연구)

  • Noh, Eun Soo;Kim, Young-Sam;Kim, Dong-Hyun;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • Bacterial diversities in the guts of sea cucumbers (Apostichopus japonicus) and shrimps (Litopenaeus vannamei) were investigated using barcoded or tag-encoded 454 pyrosequencing of 16S rRNA genes. In sea cucumbers, most of sequences were related to two genera, the genus Propionigenium in the phylum Fusobacteria and an unclassified genus in the family Flavobacteriaceae of phylum Bacteroidetes. Shrimps showed various kinds of genera including Lactococcus, Leuconostoc, Prochlorococcus, and Vibrio as well as the unclassified genera in the families, Flavobacteriaceae, Rhodobacteraceae, Desulfobulbaceae, and Helicobacteraceae and in the order Mycoplasmatales. Unclassified genera containing environmental sequences only are more than half of genera from sea cucumbers and shrimps. Sea cucumbers and shrimps could be unexplored sources of novel microbes and the bacterial diversity of them was revealed by high throughput 454 pyrosequencing.

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115

  • Jeon, Bo-Young;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • L. lactis sk071115 has been shown to grow more actively and generate lower levels of lactate in glucose-defined medium with nitrate than in medium with Mn(IV). By adding Mn(IV) to a L. lactis culture, lactate production was relatively reduced in combination with Mn(II) production, but cell mass production levels did not increase. Both cell-free extract and intact L. lactis cells reacted electrochemically with Mn(IV) but did not react with Mn(II) upon cyclic voltammetry using neutral red (NR) as an electron mediator. A modified graphite felt cathode with NR (NR-cathode) was employed to induce electrochemical reducing equivalence for bacterial metabolism. Cell-free L. lactis extract catalyzed the reduction of Mn(IV) to Mn(II) under both control and electrochemical reduction conditions; however, the levels of Mn(II) generated under electrochemical reduction conditions were approximately 4 times those generated under control conditions. The levels of Mn(II) generated by the catalysis of L. lactis immobilized in the NR-cathode (L-NR-cathode) under electrochemical reduction conditions were more than 4 times that generated under control conditions. Mn(II) production levels were increased by approximately 2.5 and 4.5 times by the addition of citrate to the reactant under control and electrochemical reduction conditions, respectively. The cumulative Mn(II) produced from manganese ore by catalysis of the L-NR-cathode for 30 days reached levels of approximately 3,800 and 16,000 mg/l under control and electrochemical reduction conditions, respectively. In conclusion, the electrochemical reduction reaction generated by the NR-cathode activated the biochemical reduction of Mn(IV) to Mn(II) by L. lactis.