• 제목/요약/키워드: Lactobacillus plantarum CK 102

검색결과 3건 처리시간 0.017초

담즙산 분해능이 뛰어난 젖산균의 분리 및 동정 (Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation)

  • 하철규;조진국;채영규;허강칠
    • 한국축산식품학회지
    • /
    • 제24권2호
    • /
    • pp.164-170
    • /
    • 2004
  • 건강한 성인의 분변으로부터 담즙산 분해능이 우수한 젖산균의 분리를 위하여 무작위 선별법과 도말법을 사용하여 층 120주의 젖산균을 1차 분리하였고, 그중 5종의 젖산균을 최종 선발하였다. 유용한 젖산균이 갖추어야할 중요한 성질인 내산성, 내담즙산성, 대장균 저해능을 시험한 결과 Lactobacillus sp. CK 102이 가장 우수한 균주로 나타났다. Lactobacillus sp. CK 102 균주는 pH 2.0에서 68% 이상의 내성과 1.0% 담즙산이 함유된 배지에서 90%이상의 내성을 나타냈으며 MRS 배지에서 대장균과 혼합 배양시 18시간 이내에 대장균을 100% 사멸시켰다. 젖산균제로써 기능이 가장 우수한 균주인 Lactobacillus sp. CK 102를 API kit와 16S rRNA sequencing 방법을 사용하여 동정한 결과 Lactobacillus platarum 으로 밝혀졌다. 이상의 결과에서 분리한 Lactobacillus sp. CK 102는 생균제로서 안전하게 이용할 수 있는 것으로 나타났다.

Cholesterol Lowering Effect of Lactobacillus plantarum Isolated from Human Feces

  • Ha Chul-Gyu;Cho Jin-Kook;Lee Chi-Ho;Chai Young-Gyu;Ha Young-Ae;Shin Shang-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1201-1209
    • /
    • 2006
  • The purpose of this study was to isolate probiotic lactic acid bacteria (LAB) that produce bile salt hydrolase (BSH), and to evaluate its effects on serum cholesterol level. One-hundred-twenty bacterial colonies were initially isolated from human feces, and five strains were selected after screening based on their resistance to acids, tolerance against bile salts, and inhibitory activity on Escherichia coli. The Lactobacillus plantarum strain with the highest level of BSH activity was identified using 16S rRNA sequences, and was named L. plantarum CK 102. L. plantarum CK 102 at a level of 1.36$\times$10$^8$cfu/ml survived in pH 2 buffer for 6 h and exhibited excellent tolerance for bile salt. Coculturing the strain with E. coli in MRS broth resulted in strong inhibition against growth of E. coli at 18 h. Furthermore, the potential effect of CK 102 on serum cholesterol level was evaluated in rats. Thirty-two rats [Sprague-Dawley (SD) male, 129$\pm$l g, 5 weeks old] were divided into four groups of eight each. For six weeks, Group 1 was fed a normal diet (negative control); Group 2 was fed a cholesterol-enriched diet (positive control); Group 3 was fed a cholesterol-enriched diet plus L. plantarum CK 102 at 1.0$\times$10$^7$cfu/ml; and Group 4 was fed a cholesterol-enriched diet plus L. plantarum CK 102 at 5.0$\times$10$^7$cfu/ml. Blood samples were collected, serum lipids were analyzed, and weights of the organs were measured. Total blood cholesterol level, triglyceride, LDL-cholesterol, and free-cholesterol values were lower in rats that were fed 1. plantarum CK 102 than in those not fed L. plantarum CK 102. This cholesterol lowering effect implies that L. plantarum CK 102 could be utilized as an additive for health-assistance foods. In conclusion, these results suggest that the 1. plantarum CK 102 isolated could be used commercially as a probiotic.

Purification and Characterization of Bile Salt Hydrolase from Lactobacillus plantarum CK 102

  • Ha Chul-Gyu;Cho Jin-Kook;Chai Young-Gyu;Ha Young-Ae;Shin Shang-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1047-1052
    • /
    • 2006
  • A bile salt hydrolase (BSH) was purified from Lactobacillus plantarum CK 102 and its enzymatic properties were characterized. This enzyme was successfully purified using ion-exchange chromatography with Q-Excellose and hydrophobic interaction chromatography with Butyl-Excellose. The purified enzyme showed a single protein band of 37 kDa by SDS-polyacrylamide gel electrophoresis, which was similar to the molecular weight of known BSHs. The amino acid sequence of GLGLPGDLSSMSR, determined by MALDI-TOF, was identical to that of BSH of L. plantarum WCFS1. Although this BSH hydrolyzed all of the six major human bile salts, glycine-conjugated bile acid was the best substrate, based on its specificity and $K_{m}$ value. Among the various substrates, the purified enzyme maximally hydrolyzed glycocholate with apparent $K_{m}$ and $V_{max}$ values of 0.5 mM and 94 nmol/min/mg, respectively. The optimal pH of the enzyme ranged from 5.8 to 6.3. This enzyme was strongly inhibited by thiol enzyme inhibitors such as iodoacetate and periodic acid.