• Title/Summary/Keyword: Lactobacillus delbruekii

Search Result 7, Processing Time 0.026 seconds

Evaluation of Lactic Acid Bacteria for the Resistance to Endocrine Disruptors

  • Kim, Su-Won;Min, Byung-Tae;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.8 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • Endocrine disruptors are chemicals which can be found in our normal daily life. They can be easily ingested through plastic food containers, pesticides, etc. They include DDT, bisphenol A, benzophenone and phenylphenol, etc. Endocrine disruptor can be very harmful and toxic because it disrupts the normal function of the endogenous endocrine system. It has been reported that endocrine disruptor can cause the fatal strike in reproductive system central nervous system and the other part of the body. We have examined if the growth of lactic acid bacteria could be resistant to the endocrine disruptor. We have used Lactobacillus delbruekii as an experimental strain and benzophenone and phenylphenol for the comparison purpose. Experiments included the evaluation of turbidity, absorbance and actual cell counts. Although Lactobacillus delbruekii showed the higher resistance to benzophenone than phenylphenol it was still resistant to both benzophenone and phenylphenol. Because the experimental concentrations of benzophenone and phenylphenol were so high to compare with the actual concentration we meet in daily life, Lactobacillus delbruekii was considered to be sufficient to survive in the environmental concentration of these endocrine disruptors. This study should contribute to the development of fermented beverage with beneficial effect by lactic acid bacteria.

  • PDF

김치에서 분리한 Lactococcus sp. JC-3 bacteriocin의 특성

  • Kim, Yeong-Hwa;Kim, Mi-Ryeong;Park, Geun-Yeong;Jeon, Hong-Gi;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.623-625
    • /
    • 2000
  • Bacteriocin-producing lactic acid bacteria was isolated from Kimchi using MRS as selective media and Lactobacillus delbruekii subsp. delbruekii as an indicator strain. Strain JC-3 was tentatively identified as Lactococcus latis subsp. lactis through the API test and the bacteriocin produced by JC-3 showed the inhibitory activity against Grampositive pathogens and other lactic acid bacteria. The antimicrobial substance was inactivated by Protamax, Aroase AP-10, Neutrase, R-AMANO and was confirmed to be heating at $100^{\circ}C$. However, it was lost at high pH values showed the highest bacteriocin activity at a culture temperature of $30^{\circ}C$. The bacteriocin was partially purified by ammonium sulfate precipitation, Sep-pak $C_{18}$ cartridge. The apparent molecular mass of the bacteriocin was about 8 Kda, which was determined through the direct detection of bactericidal activity using SDS -PAGE.

  • PDF

Characterization of the Antagonistic Activity against Lactobacillus plantarum and Induction of Bacteriocin Production (김치로부터 Lactobacillus plantarum 생육저해 박테리오신 생산균주의 분리 및 박테리오신 생산의 유도효과)

  • Yang, Eun-Ju;Chang, Ji-Yoon;Lee, Hyong-Joo;Kim, Jeong-Hwan;Chung, Dae-Kyun;Lee, Jong-Hoon;Chang, Hae-Choon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.311-318
    • /
    • 2002
  • A new bacteriocin producing lactic acid bacteria having antagonistic activity against Lactobacillus plantarum, was isolated from Kimchi. It was identified as Leuconostoc mesenteroides, and designated as Leuconostoc mesenteroides B7. The bacteriocin from Leuconostoc mesenteroides B7 named as bacteriocin B7 was stable in the pH range $2.5{\sim}9.5$. Bacteriocin B7 was active over a wide temperature range from $4^{\circ}C$ to $120^{\circ}C$. It was inactivated by proteinase K, trypsin, ${\alpha}-chymotrypsin$, and protease treatments indicating its proteinous nature. Tricine-SDS-PAGE of the purified bacteriocin B7 showed the presence of a single band, having a molecular mass of about 3,500 dalton. Mixed culture of the producer and the indicator, Lb. plantarum KFRI 464 or Lb. delbruekii KFRI 347, increased production of bacteriocin B7. This result suggested the presence of bacteriocin inducing factor in the indicator strain. The inducing factor was localized in cell debris and intracellular faction of the indicator cell, Lb. plantarum KFRI 464. Treatment of the inducing factor with proteinase K destroyed inducing activity. This result strongly suggested that the inducing factor is a protein.

Preparation and Characteristics of Curd Yogurt from Milk Added with Purple Sweet Potato (자색고구마를 첨가한 호상요쿠르트의 제조와 특성)

  • 이주찬;이가순;이종국;한규흥;오만진
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.442-447
    • /
    • 1999
  • A curd yogurt was prepared by fermenting milk added with skim milk powder and purple sweet potato by culture of 5 types of lactic acid bacteria(Lactobacillus delbruekii sub. sp. lactis, Streptococcus lactis, acidity, number of viable cell, stability of purple sweet potato's pigment and keeping qualify. Among the organisms tested, the acid production and number of viable cell by the culture of L bulgaricus remarkably increased for the first 12 hem which showed 1.04${\times}$10$\^$9/ CFU/mL in number of viable cell and 4.22 In pH where as fermentation by the culture of B. bifidum was slow. After 36 hours of incubation which showed 3.3 ${\times}$ l0$\^$8/ CFU/mL in number of viable cell and 5.1 in pH. In stabilities of purple sweet potato anthocyanin pigment n fermentation, yogurt by B. bifidum was found to be most stable followed by Leuc. lactis, L. delbruekii sub. sp. lactis, L bulgaricus, but yogurt by St. lactis was not stable. When curd yogurt added with Purple sweet Potato was kept at 2∼3$^{\circ}C$ for 14 day, its keeping quality(pH, titratable acidity, number of viable cell) was relative good except product by L. bulgaricus was found to be decreased most of viable cell. After 2 weeks of keeping, pigment of yogurt was decreased by B. bifidum, stable by L. delbruekii sub. sp. lactis.

  • PDF

Screening of Radio-resistant Lactic Acid Bacteria

  • Hwang, E-Nam;Kang, Sang-Mo;Kim, Jae-Kyung;Lee, Ju-Woon;Park, Jong-Heum
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.335-340
    • /
    • 2013
  • This study screened for radio-resistant strains lactic acid bacteria (LAB) by evaluating their capability to survive exposure to ionizing radiation. Ten strains of LAB - Lactobacillus bulgaricus, Lactobacillus paracasei, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pediocuccos pentosaceus - were selected and subcultuted twice. The LAB was then further cultured for 3 d at $37^{\circ}C$ to reach 7-10 Log colony-forming units (CFU)/mL prior to irradiation and immediately exposed to gamma rays or electron beams with absorbed doses of 0, 1, 2, 3, 4, 5, 6, 8, and 10 kGy. Gamma irradiation gradually decreased the number of the tested viable LAB, and the effect was irradiation dose dependent. A similar effect was found in electron beam-irradiated LAB. Radiation sensitivity of LAB was calculated as $D_{10}$ values, which ranged from 0.26 kGy to 0.9 kGy and 0.5 kGy to 1.44 kGy with exposure to gamma and electron beam irradiation, respectively, in all tested LAB. L. acidophilus was the most resistant to gamma and electron beam irradiation, with $D_{10}$ values of 0.9 kGy and 1.44 kGy, respectively. These results suggest that L. acidophilus might be suitable for the preparation of probiotics as direct-fed microbes for astronauts in extreme space environments.

Effect of Salt Type and Concentration on the Growth of Lactic Acid Bacteria Isolated from Kimchi (소금의 종류와 농도가 배추김치에서 분리한 유산균의 생육에 미치는 영향)

  • Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.743-747
    • /
    • 2003
  • Tests show that the growth of lactic bacteria in kimchi varies according to the type and concentration of salt used. Weissella confusa, the early stage bacteria in kimchi fermentation, increased sharply after 5 hr of induction with 3% light salt and refined salt. However, the induction period lengthened to 12 hr with 3% sea salt and bamboo salt. Lactobacillus delbrueckii ss lactis and L. pentosus which grow in the middle stage of fermentation, and L. hamsteri, which grows at the end stage of fermentation, were found after 12 hr of induction with 3% salt of all kinds. When 5% light salt was added to the culture medium, the induction period of bacteria other than W. confusa lengthens to 12 hr. The trend is similar for sea salt, bamboo salt, and refined salt, with a higher NaCl concentration resulting in less growth. W. confusa showed salt tolerance, but L. hamsteri was affected by the type and concentration of salt. With 5% sea salt, bamboo salt, and refined salt, the growth of bacteria was inhibited by up to 24 hr.

Screening of Immune-Active Lactic Acid Bacteria

  • Hwang, E-Nam;Kang, Sang-Mo;Kim, Mi-Jung;Lee, Ju-Woon
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.541-550
    • /
    • 2015
  • The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life.