• Title/Summary/Keyword: Laccase activity

Search Result 151, Processing Time 0.024 seconds

Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent

  • Teerapatsakul, Churapa;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.260-268
    • /
    • 2016
  • Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.

Production and Properties of Laccase from Coriolus versicolor (Coriolus versicolor에 의한 Laccase 생산(生産) 및 성질(性質)에 관한 연구(硏究))

  • Hong, Jai-Sik;Kim, Myung-Kon;Kim, Yun-Hi;Lee, Jong-Bae
    • The Korean Journal of Mycology
    • /
    • v.15 no.2
    • /
    • pp.99-170
    • /
    • 1987
  • The production and properties of laccase(E.C.1.10.3.2) from Coriolus versicolor were studied. The results were as follows; The nutritional optimum conditions for laccase production were 1% indulin At, 0.3% peptone 0.1% $KH_2PO_4$, 0.02% $MgSO_4$, 0.1 mg% $CuSO_4$.and 0.005 mg% thiamine HCI. The optimum temperature and pH of laccase production were $25^{\circ}C$ and 5.0, and respectively, and the cultural period was 20 days. The optimum pH and temperature for the activity were 4.6 and $40^{\circ}C$, respectively. The enzyme was almost stable under the temperature of $40^{\circ}C$ and within the pH range of 4.0-5.0. The enzyme was stable at $40^{\circ}C$ for 30 min. $Cu^{++}$, $Fe^{++}$ and $Ca^{++}$ activated the enzyme activity, but $Mn^{++}$ and $Hg^{++}$ were inhibited. The enzyme was totally inhibited by 1 mM sodium azide and 1 mM potassium cyanide, and partly inhibited by EDTA and hydroxyamine.

  • PDF

Dye Removal by Phlebia tremellosa and Lignin Degrading Enzyme Transformants (아교버섯(Phlebia tremellosa)의 리그닌 분해효소 형질전환체를 이용한 염료의 탈색)

  • Kum, Hyun-Woo;Ryu, Sun-Hwa;Lee, Sung-Suk;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.93-95
    • /
    • 2010
  • White rot fungi which have lignin degrading enzymes show high degrading activity to diverse recalcitrant compounds such as polycyclic aromatic compounds, dyes, explosives and endocrine disrupting chemicals. We have examined decolorizing activity of dyes by Phlebia tremellosa and two transformants which had genetically transformed using laccase or manganese peroxidase (MnP) gene. In case of methyl green, wild type strain showed 50% decolorization while laccase transformant (TF2-1) and MnP transformant (T5) showed more than 90% decolorization on day 3. Remazol brilliant blue R(RBBR) was decolorized up to 85% by two transformants while the wild type showed 67% decolorization on day 3. Transformants TF2-1 and T5 both showed increased laccase and MnP activity respectively during the whole growing phase.

Secretory Production of the Hericium erinaceus Laccase from Saccharomyces cerevisiae

  • Jin Kang;Thuat Van La;Mi-Jin Kim;Jung-Hoon Bae;Bong Hyun Sung;Seonghun Kim;Jung-Hoon Sohn
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.930-939
    • /
    • 2024
  • Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and ⳑ-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-β-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.

Assembly of Laccase over Platinum Oxide Surface and Application as an Amperometric Biosensor

  • Quan, De;Kim, You-sung;Yoon, Kyung-Byung;Shin, Woon-sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2002
  • Laccase could be successfully assembled on an amine-derivatized platinum electrode by glutaraldehyde coupling. The enzyme layer formed on the surface does not communicate electron directly with the electrode, but the enzymatic activity of the surf ace could be followed by electrochemical detection of enzymatically oxidized products. The well-known laccase substrates, ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) and PPD (p-phenylenediamine) were used. ABTS can be detected down to 0.5 ${\mu}M$ with linear response up to 15 ${\mu}M$ and current sensitivity of 75 nA/ ${\mu}M.$ PPD showed better response with detection limit of 0.05 ${\mu}M$, linear response up to 20 ${\mu}M$, and current sensitivity of 340 nA/ ${\mu}M$ with the same electrode. The sensor responses fit well to the Michaelis-Menten equation and apparent $K_M$ values are 0.16 mM for ABTS and 0.055 mM for PPD, which show the enzymatic reaction is the rate-determining step. The laccase electrode we developed is very stable and more than 80% of initial activity was still maintained after 2 months of uses.

Demethoxylation of Milled Wood Lignin and Lignin Related Compounds by Laccase from White-rot Fungus, Cerrena unicolor

  • Leonowicz, A.;Rogalski, J.;Malarczyk, E.;Grzywnowicz, K.;Ginalska, G.;Lobarzewski, J.;Ohga, S.;Pashenova, N.;Lee, S.S.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.29-40
    • /
    • 2000
  • Highly purified Cerrena unicolor laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) caused the demethoxylation of milled wood lignin and several lignin related substances. The constitutive form of the enzyme produced extracellularly by C. unicolor fermenter culture was isolated and purified by ion-exchange chromatography on the DEAE-Toyopearl column and by affinity chromatography on a ConA-Sepharose and Syringyl-AH-Sepharose 4B columns. The enzyme was further immobilized on functionalized porous glass (CPG) and keratin coated CPG. The demethylating activity was monitored both by estimation of released methanol and by detection of the level of methoxyl groups (also in some water miscible solvents) after incubation of lignin materials with laccase preparations (free and immobilized). The effects of the incubation time and temperature on the demethoxylating activity of immobilized laccase preparations were also studied.

  • PDF

Production of Extracellular Laccase by Lignindegrading Basidiomycete Coriolus versicolor CV3 (리그닌 분해균 Coriolus versicolor CV3에 의한 Laccase의 생산)

  • Kwon, Soon Kyung;Yoon, Min Ho;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 1991
  • The cultural conditions in shake flasks were investigated under which maximum amounts of laccase produced by a strain of white-rot fungus Coriolus versicolor CV3. The enzyme yields on potato-malt extract medium by the fungus were higher than on other media consisted of onion infusion or malt extract, with maximum activity of $1.50unit/m{\ell}$ culture or 119.5 unit/g mycelium at 11 days of incubation. Maximum yields of laccase and growth were obtained by supplementation of yeast extract or potassium nitrate to the potato-malt extract medium. Addition of 2.5-xylidine at $4{\times}10^{-4}M$ concentration to the medium induced the laccase production 3.1-fold higher than the basal level, while the mycelial growth was somewhat repressed. The pH optimum for the growth and laccase formation by the fungus was between pH 4 to 4.5.

  • PDF

Continuous Degradation of azo dye by Immobilized laccase (고정화 laccase에 의한 azo 염료의 연속 분해)

  • Kwon, Sin;Ryu, Won-Ryul;Cho, Moo-Hwan
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.189-194
    • /
    • 2002
  • Laccase produced from Trametes sp. was immobilized on CNBr-activated Sepharose-4B (CAS4B) and tested for degradation of azo dyes. Laccase was efficiently immobilized on CAS4B. Immobilization of laccase on CAS4B increased pH, thermal and proteolytic stabilities. Optimum pH and temperature of immobilized laccase were pH 3 and 40$\^{C}$, respectively as same as those of free laccase. The K$\_$m/($\mu$mol/ml) values of free and immobilized laccase for Reactive Blue 19 as the substrate were 0.34 and 2.07, respectively V$\_$max/($\mu$mol/mL$.$min) values of them were 0.12 and 0.1, respectively. In repeated batch reactions, conditions retained high stability and degradation of dye for immobilized laccase were pH 5 and 30$\^{C}$. HBT didn\\`t decrease highly activity of immobilized laccase. Immobilized laccase was very stable for degrading dyes continuously in a packed-bed reactor containing laccase immobilized on CAS4B. For continuous degradation of 100 $\mu$M Reactive Blue 19 and 50 $\mu$M Acid Red 57 in the presence of 0.1 mM HBT under optimum conditions, immobilized laccase retained 70% of degradation ability even after 30 hours.

Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

  • Lim, Seon-Hwa;Lee, Yun-Hae;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.214-220
    • /
    • 2013
  • This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at $4^{\circ}C$ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization.

Biochemical and Molecular Characterization of Laccases from Wild Mushrooms

  • Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.43-43
    • /
    • 2014
  • White rot fungi have been useful source of enzymes for the degradation of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and synthetic dyes. PAHs are widespread organic compounds present in fossil fuels and are routinely generated by incomplete fuel combustion. PAHs are some of the major toxic pollutants of water and soil environments. Synthetic dyes are major water-pollutants, which are toxic to organisms in water environments and interfere photosynthesis of water plants. Removal of PAHs and synthetic dyes has been of interests in the environmental science especially in the environmental microbiology. Mushrooms are fungal groups that function as primary degraders of wood polyphenolic lignin. The ligninolytic enzymes produced by mushroom, including manganese peroxidase, lignin peroxidase, and laccase, mediate the oxidative degradation of lignin. The catalytic power of these enzymes in the degradation of aromatic ring compounds has been sought for the degradation of various organic compounds. In this project, we have screened 60 wild mushroom strains for their degradation activity against two representative PAHs, naphthalene and anthracene, and five aromatic dyes, including alizarin red S, crystal violet, malachite green, methylene blue, rose bengal. The degradation of PAHs was measured by GC while the decolorization of dyes was measured by both UV spectrophotometer and HPLC. As results, 9 wild mushroom strains showed high activity in degradation of PAHs and textile dyes. We also describe the secretive enzyme activities, the transcription levels, and cloning of target genes. In conjunction with this, activities of degradative enzymes, including laccase, lignin peroxidase, and Mn peroxidase, were measured in the liquid medium in the presence of PAHs and dyes. Our results showed that the laccase activity was directed correlated with the degradation, indicating that the main enzyme acts on PAHs and dyes is the laccase. The laccase activity was further simulated by the addition of $Cu^{2+}$ ion. Detailed studies of the enzyme system should be sought for future applications.

  • PDF