• Title/Summary/Keyword: LacZ fusion

Search Result 79, Processing Time 0.021 seconds

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.

Functional Expression of an Anti-GFP Camel Heavy Chain Antibody Fused to Streptavidin (Streptavidin이 융합된 GFP항원 특이적인 VHH 항체의 기능적 발현)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1416-1423
    • /
    • 2018
  • With strong biotin binding affinity ($K_D=10^{-14}M$), the tetrameric feature of streptavidin could be used to increase the antigen binding activity of a camel heavy chain (VHH) antibody through their fusion, here stained with biotinylated horseradish peroxidase and subsequent immunoassays ELISA and Western blot analysis. For this application, we cloned the streptavidin gene amplified from the Streptomyces avidinii chromosome by PCR, and this was fused to the gene of the 8B9 VHH antibody which is specific to green fluorescent protein (GFP) antigens. To express a soluble fusion protein in Escherichia coli, we used the pUC119 plasmid-based expression system which uses the lacZ promoter for induction by IPTG, the pelB leader sequence at the N-terminus for secretion into the periplasmic space, and six polyhistidine tags at the C-terminus for purification of the expressed proteins using an $Ni^+$-NTA-agarose column. Although streptavidin is toxic to E. coli because of its strong biotin binding property, this soluble fusion protein was expressed successfully. In SDS-PAGE, the size of the purified fusion protein was 122.4 kDa in its native condition and 30.6 kDa once denatured by boiling, suggesting the tetramerization of the monomeric subunit by non-covalent association through the streptavidin moiety fusing to the 8B9 VHH antibody. In addition, this fusion protein showed biotin binding activity similar to streptavidin as well as GFP antigen binding activity through both ELISA and Western blot analysis. In conclusion, the protein resulting from the fusion of an 8B9 VHH antibody with streptavidin was successfully expressed and purified as a soluble tetramer in E. coli; it showed both biotin and GFP antigen binding activity suggesting the possible production of a tetrameric and bifunctional VHH antibody.

Characterization and Regulation of the Gene Encoding Monothiol Glutaredoxin 3 in the Fission Yeast Schizosaccharomyces pombe

  • Moon, Jeong-Su;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2005
  • Glutaredoxins (Grxs) are thioloxidoreductases which are required for maintaining thiol/disulfide equilibrium in living cells. The Grx3 gene, which encodes one of the three monothiol Grxs in the fission yeast Schizosaccharomyces pombe, was characterized, and its transcriptional regulation studied. Genomic DNA encoding Grx3 was isolated by PCR, and a plasmid pTT3 carrying this DNA was produced. The DNA sequence has 1,267 bp, which would encode a monothiol Grx of 166 amino acids with a molecular mass of 18.3 kDa. The putative protein has 27% homology with Grx5, and contains many hydrophobic amino acid residues in its N-terminal region. S. pombe cells harboring pTT3 had increased Grx activity and enhanced survival on minimal medium plates containing aluminum (5 mM), BSO (0.05 mM), menadione (0.01 mM) or cadmium (0.2 mM). The 568 bp upstream region of Grx3 was fused into the promoterless b-galactosidase gene of the shuttle vector YEp367R to generate fusion plasmid pMJS10. Potassium chloride (KCl) and metals including aluminum and cadmium enhanced the synthesis of ${\beta}$-galactosidase from the fusion gene. The synthesis of ${\beta}$-galactosidase was also enhanced, in a Pap1-dependent manner, by fermentable carbon sources such as glucose (at low concentrations) and sucrose, but not by non-fermentable carbon sources such as ethanol and acetate. Grx3 mRNA increased in response to treatment with BSO. These observations indicate that S. pombe Grx3 is involved in the response to stress, and is regulated by stress.

Analysis of Two Promoters that Control the Expression of the GTP cyclohydrolase I Gene in Drosophila melanogaster

  • Byun, Jaegoo;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.583-589
    • /
    • 2009
  • GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5'-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between -98 and +31, and between -73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between -98 and -56 and between -73 and -41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilrs GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.

Comparative Analyses of Flavonoids for nod Gene Induction in Bradyrhizobium japonicum USDA110

  • RYU JI-YOUNG;HUR HOR-GIL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1280-1285
    • /
    • 2005
  • Using the nodY::lacZ fusion system in Bradyrhizobium japonicum USDA 110, 22 flavonoids, which have structurally different features, were tested to define the role of the substituted functional groups as an inducer or inhibitor for the nod gene expression. A functional ,group of 4'-OH on the B-ring and the double bond between 2-C and 3-C on the C ring were required to induce the nod gene expression in B. japonicum USDA 110. In the case of isoflavones, the 4'-methoxyl group, which blocks the open 4'-OH functional group, did not significantly lower inducing activity, as compared with isoflavones with 4'-OH. However, all flavonols tested, which have a 3-OH functional group on the C-ring, did not induce, but inhibited the nod gene expression. Flavone, 7-hydroxyflavone, and kaempferol (5,7,4'-trihydroxyflavonol) at $1\;{\mu}M$ concentration significantly inhibited the nod gene expression induced by 7,4'-dihydroxyflavone. However, 7-hydroxy-4'-methoxyflavone at $1\;{\mu}M$ concentration showed a synergistic effect with genistein and 7,4'-dihydroxyflavone on the induction activity.

Site-Directed Mutation Effect of the Symmetry Region at the mRNA 5'-end of Escherichia coli aeg-46.5 Gene

  • Ahn, Ju-Hyuk;Choe, Mu-Hyeon
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.92-97
    • /
    • 1996
  • The age-46.5 gene of Escherichia coli is induced by nitrate ion and regulated by Fnr, NarL, and NarP during anaerobic growth. aeg-46.5::lacZ fusion gene shows its maximum expression in narL host after two hours of aerobic to anaerobic switch in M9-Glc-nitrate medium. Fnr and NarP act as positive regulators, and NarL acts as a negative regulator. The control region of the aeg-46.5 was identified and the binding sites of regulator proteins have been predicted (Reznikoff and Choe (1993)). It has two symmetry regions. One is located at -52~-37 bp from the anaerobic mRNA 5'-end, which is the binding site of NarL and NarP. The other is located at +37~+56 bp from the 5'-end of mRNA. In this study, the downstream symmetry region from the mRNA 5'-end was investigated by site-directed mutagenesis. The destruction of the symmetry region increases the expression level of aeg-46.5. We propose that the symmetry region interferes with the expression of aeg-46.5 possibly by forming a stem-and-loop structure.

  • PDF

Regulation of the sufABCDSE Operon by Fur

  • Lee, Joon-Hee;Yeo, Won-Sik;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • A promoter that is inducible by paraquat and menadione, the superoxide generators, independently of soxRS has been found in front of the sufABCDSE operon in Escherichia coli. Based on the observation that SufA is a holomog of IscA that functions in the assembly of iron sulfur cluster and the sufA promoter (sufAp) contains a putative Fur-binding consensus, we investigated whether this gene is regulated by Fur, a ferric uptake regulator, When examined in several sufAp-lacZ chromosomal fusion strains, sufAp was induced by EDTA, an iron chelator and a well-known Fur-inducer, The basal level of sufA expression increased dramatically in fur mutant, suggesting repression of sufAp by Fur. The derepression in fur mutant and EDTA-induction of sufA expression required nucleotides up to -61, where a putative Fur box is located. Purified Fur protein bound to the DNA fragment containing the putative Fur box between -35 and -10 promoter elements. The regulation by Fur and menadione induction of sufAp acted independently. The rpoS mutation increased sufA induction by menadione, suggesting that the stationary sigma factor RpoS acts negatively on sufA induction.

Regulation of SoxR, the superoxide-sensory regulator in Escherichia coli.

  • Lee Joon-Hee;Koo Mi-Sun;Yeo Won-Sik;Roe Jung-Hye
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.24-31
    • /
    • 2000
  • In order to find out SoxR-reducing system in E. coli, we generated Tn10-insertion mutants and screened for constitutive expression of SoxS in a soxS-lacZ fusion strain. One mutation was mapped in rseB, a gene in rseABC (Regulation of SigmaE) operon. The constitutive soxS-expressing phenotype was due to the polar effect on the downstream gene, rseC. RseC is likely to function as a component of SoxR reduction system because SoxR was kept in oxidized form to activate soxS expression in rseC mutant. RseC is an integral membrane protein with an N-terminal cysteine-rich domain in the cytoplasm. The functionally critical cysteines were determined by substitution mutagenesis. The truncated N-terminal domain of RseC reduced the soxS transcription by $50\%$ as judged by in vitro transcription assay. Currently RseC is believed to be a reducing factor for SoxR. However, the mechanism for the reduction needs further investigation.

  • PDF

Antigenic Determinant Mapping in preS2 Region of Hepatitis B Surface Antigen (B형 간염바이러스 표면항원 preS2 부위의 항원결정인자 규명)

  • 권기선;김창수;박주상;한문희;유명희
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.13-18
    • /
    • 1990
  • A DNA sequence encoding the adr subtype preS2 region of hepatitis B virus envelope protein was fused to 5' end of lacZ gene yielding a plasmid pTSZ, in order to produce a preS2-$\beta$-galactosidase fusion protein. Serial deletions from 3' and 5' end of preS2 were constructed in plasmids, which were expressed and their antigenicities were examined with the monoclonal antibody H8. Deletions from amino and carboxy terminal to certain points did not affect the antigenicity, but the longer deletions destroyed the antigenicity. End points of deleted preS2 sequence were determined by DNA sequencing. As a result, each end of preS2 epitope was located in the region of amino acid residue 130-132 and 140-142, respectively. Residue 143 may be supplementary for antigenic epitope since the deletion from carboxy terminal to residue 143 revealed partial defect of antigenicity. In the interval of antigenic epitope the amino acid differences between adr and adw2 subtype occurred ar residue 130, 132, and 141. This result indicated that one or more of the three residues are responsible for the binding specificity of monoclonal antibody H8 to adr subtype preS2 fusion protein.

  • PDF

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF