• Title/Summary/Keyword: Lac- mutant

Search Result 48, Processing Time 0.024 seconds

Molecular Characterization of Biosynthetic Genes of an Antifungal Compound Produced by Pseudomonas fluorescens MC07

  • Kim Jin-Woo;Kim Eun-Ha;Kang Yong-Sung;Choi Ok-Hee;Park Chang-Seuk;Hwang In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.450-456
    • /
    • 2006
  • Pseudomonas fluorescens MC07 is a growth-promoting rhizobacterium that suppresses mycelial growth in fungi such as Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici. To determine the role of the bacterium's antifungal activity in disease suppression, we screened 2,500 colonies generated by Tn5lacZ insertions, and isolated a mutant 157 that had lost antifungal activity. The EcoRI fragment carrying Tn5lacZ was cloned into pBluescript II SK(+) and used as a probe to isolate wild-type clones from a genomic library of the parent strain, MC07. Two overlapping cosmid clones, pEH4 and pEH5, that had hybridized with the mutant clone were isolated. pEH4 conferred antifungal activity to the heterologous host P.fluorescens strain 1855.344, whereas pEH5 did not. Through transposon mutagenesis of pEH4 and complementation analyses, we delineated the 14.7-kb DNA region that is responsible for the biosynthesis of an antifungal compound. DNA sequence analysis of the region identified 11 possible open reading frames (ORF), ORF1 through ORF11. A BLAST search of each putative protein implied that the proteins may be involved in an antifungal activity similar to polyketides.

Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA)

  • Lee, Hye Soo;Song, Hun-Suk;Lee, Hong-Ju;Kim, Sang Hyun;Suh, Min Ju;Cho, Jang Yeon;Ham, Sion;Kim, Yun-Gon;Joo, Hwang-Soo;Kim, Wooseong;Lee, Sang Ho;Yoo, Dongwon;Bhatia, Shashi Kant;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1060-1068
    • /
    • 2021
  • Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.

Temperature-Dependency Urease Activity in Vibrio parahaemolyticus is Related to Transcriptional Activator UreR

  • Park, Kwon-Sam;Lee, Soo-Jae;Chung, Yong-Hyun;Iida, Tetsuya;Honda, Takeshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1456-1463
    • /
    • 2009
  • Vibrio parahaemolyticus possessing urease-positive property is relatively rare, but such strains consistently exhibit the TDH-related hemolysin (TRH) gene. In this study, we examined the effects of incubation temperature on urease activity expression, using the TH3996 and AQ4673 strains where the enzyme activity is known to be temperature-dependent and -independent, respectively. In the TH3996 strain, $\beta$-galactosidase activity was 4.4-fold lower after $30^{\circ}C$ cultivation than after $37^{\circ}C$ in a ureR-lacZ fusion strain, but temperature dependency was not found in ureD- or nikA-lacZ fusion strains. However, ureR-, ureD-, and nikA-lacZ fusions of the AQ4673 strain was not influenced by incubation temperature. We compared the promoter sequences of ureR between the above two strains. Intriguingly, we detected mismatches of two nucleotides between the two strains located at positions -66 and -108 upstream of the methionine initiation codon for UreR. Additionally, urease activity was not affected by culture temperature at either $30^{\circ}C$ or $37^{\circ}C$ by allelic introduction of the AQ4673 ureR gene into the TH3996 ureR deletion mutant. Taken together, our study demonstrates that the transcriptional factor UreR is involved in the temperature dependency of urease activity, and two nucleotides within the ureR promoter region are of particular importance for the urease activity dependency of V. parahaemolyticus.

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

Regulation of the sufABCDSE Operon by Fur

  • Lee, Joon-Hee;Yeo, Won-Sik;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • A promoter that is inducible by paraquat and menadione, the superoxide generators, independently of soxRS has been found in front of the sufABCDSE operon in Escherichia coli. Based on the observation that SufA is a holomog of IscA that functions in the assembly of iron sulfur cluster and the sufA promoter (sufAp) contains a putative Fur-binding consensus, we investigated whether this gene is regulated by Fur, a ferric uptake regulator, When examined in several sufAp-lacZ chromosomal fusion strains, sufAp was induced by EDTA, an iron chelator and a well-known Fur-inducer, The basal level of sufA expression increased dramatically in fur mutant, suggesting repression of sufAp by Fur. The derepression in fur mutant and EDTA-induction of sufA expression required nucleotides up to -61, where a putative Fur box is located. Purified Fur protein bound to the DNA fragment containing the putative Fur box between -35 and -10 promoter elements. The regulation by Fur and menadione induction of sufAp acted independently. The rpoS mutation increased sufA induction by menadione, suggesting that the stationary sigma factor RpoS acts negatively on sufA induction.

Evidences that Suggest the Spread of Multiple-Antibiotic-Resistance (mar) Operon of Escherichia coli Mutants among Gram-Negative Bacilli (Mar (Multiple-Antibiotic-Resistance) Operon 돌연변이 대장균의 그람음성 세균들간 전파 가능성에 대한 근거)

  • Byung-Tae Park
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.17-26
    • /
    • 1999
  • To evaluate the spreading possibilities of the marRAB mutation of E. coli Mar mutant among gram-negative bacilli, chromosomal marRAB mutations of Mar mutants were transduced by $\lambda$placMu9 into pUC19 (Lac$^{+}$, Ap$^{r}$) cloning site in another strains of E. coli or onto the chrmosome of S. typhimurium and P. aeruginosa, selected for transduction by Mar phenotype, Lac$^{-}$, or Ap$^{r}$, and tested for their antimicrobial resistance with or without addition of salicylate (SAL). Compared with wild type strains of JM109, NM522, harboring pUC19 or not, respectively, all strains of JM109 or NM522 carrying pUC19::marRAB mutation showed higher levels of antimicrobial resistance and SAL induction of Mar phenotype than those of wild type. However, in contrast to the original Mar mutants, there were some tendencies of decreased antimicrobial resistance of JM109 or NM522 harboring pUC19::marRAB mutation with SAL induction against chlorarnphenicol (Cm) and tetracycline (Tc), or Tc and ciprofloxacin (Cp), respectively. Almost the same results, as shown as the cases of E. coli JM109 or NM522, were obtained from all transductants of S. typhimurium and P. aeruginosa, except Cp, against which increased antimicrobial resistance with SAL induction was shown. This study, employed the methods of transformation or transduction among intercellular gene transfer methods between gram-negative bacteria, shows the evidences that suggest indirectly the spreading possibilities of marRAB mutation among gram-negative bacilli.

  • PDF

Expression of mue Gene on Plasmid pKM101 and pSL4 (플라스미드 pKM101 과 pSL4 의 muc 유전자의 발현에 관한 연구)

  • 전홍기;황유경;이상률;백형석
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.371-376
    • /
    • 1992
  • Plasmid pSL4 of plasmid pKM 101 mutant have high protection effects and mutagenecity for UV and methyl methanesulfonate, The mucA gene and a pan of mucE gene of pKM 101 and pSL4 were sucloned onto lacZ' fusion vector pMC874 and the hybrid plasmids pBH31 and pBH30 were selected. These plsmids were intrduced into $recA^{+}lexA^{-}$, $recA^{-}와lexA^{+}$ strains and determined the activity of $\beta$-galactosidase for UV. In $recA^{+}lexA^{+}$ strain.$\beta$-galactosidase activity of pBH30 included mue region of pSL4 was higher thall pBH31 inclued muc region of pKM 10 I and the tf-galactosidase of two plasmids was not induced in reeA and leeA mutants with or without UV illumination. Without UV illumination. the .$\beta$-galactosidasc of pBH30 was expressed a little higher level than that of pBH3L We suggest that the functional difference of pKM 10l and pSL4 are due to the variety of mue regulatory region. Also. a plasmid pBH 100 earring umuC' -lacZ' gene fusion was constructed in vitro to study the regulation of the umu operon. It was shown that the umu operon is induced by UV and is regulated by the reeA and lexA genes.

  • PDF

Glutamic Acid Rich Helix II Domain of the HIV-1 Vpu has Transactivation Potential in Yeast

  • Hong, Seung-Keun;Bae, Yong-Soo;Kim, Jung-Woo
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.405-408
    • /
    • 1999
  • The transactivation potential of HIV-1 Vpu was identified from the yeast two-hybrid screening process. The helix II domain of HIV-1 Vpu protein and mutant Vpu protein lacking the transmembrane domain exhibited transactivation of the LacZ and Leu2 reporter genes carrying LexA upstream activating sequences, but full-length HIV-1 Vpu and the helix I domain of HIV-1 Vpu did not. The helix II domain of HIV-1 Vpu consists of a number of acidic amino acids, and is especially rich in glutamic acid, a characteristic of many transcription factors. This result suggests that protein-protein interaction may occur through the acidic helix II domain of HIV-1 Vpu.

  • PDF

Change in Proteomic Profiles of Genetically Modified 1,3-Propanediol-Producing Recombinant E. coli

  • Jin, Li-Hua;Lee, Jung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1439-1444
    • /
    • 2008
  • The recombinant E. coli $\Delta$6 mutant (galR, glpK, gldA, IdhA, lacI, tpiA) was used to produce 1,3-propanediol (PD) from glucose. The 1,3-PD production increased with feedback control of the glucose concentration using fed-batch fermentation. The maximum 1,3-PD concentration produced was 43 g/l after 60 h of fermentation. Glycerol production was minimized when controlling the glucose concentration at less than 1 g/l. The expression levels of seven enzymes related to the 1,3-PD production metabolism were compared during the cell growth phase and 1,3-PD production phase, and their expression levels all increased during 1,3-PD production, with the exception of alcohol dehydrogenase.