• Title/Summary/Keyword: Laboratory-made slag

Search Result 11, Processing Time 0.017 seconds

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF