• Title/Summary/Keyword: Laboratory mixing test

Search Result 155, Processing Time 0.024 seconds

Solidification of Heavy Metal Ions Using Magnesia-phosphate Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화)

  • Choi, Hun;Kang, Hyun-Ju;Song, Myung-Shin;Jung, Eui-Dam;Kim, Ju-Seng
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Since 1980's, many mines have been closed and abandoned due to the exhaustion of deposits and declining prices of international mineral resources. Because of the lack of post management for these abandoned mines, Farm land and rivers were contaminated with heavy metal ions and sludge. We studied on the solidification/stabilization of heavy metal ions, chromium ions and lead ions, using magnesia-phosphate cement. Magnesia binders were used calcined-magnesia and dead-burned magnesia. Test specimens were prepared by mixing magnesia binder with chromium ions and lead ions and activators. We analyzed the hydrates by reaction between magnesiaphosphate cement and each heavy metal ions by XRD and SEM-EDAX, and analyzed the content of heavy metal ions in the eruption water from the specimens for the solidification and stabilization of heavy metal ions by ICP. The results was shown that calcined magnesia binder is effective in stabilization for chromium ions and dead-burned magnesia binder is effective in stabilization for lead ions.

The Design and Test of Ejectors for a 75-kW Fuel Cell System (75kW급 연료전지 시스템의 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.678-685
    • /
    • 2011
  • An Ejector enhances system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75-kW Molten Carbonate Fuel Cell (MCFC) system at KEPCO Research Institute. In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In the first place, a few sample ejectors were manufacured and the entrainment ratio was measured at a dummy stack. Through this experiment, the optimum ejector was chosen. The 75-kW MCFC system equipped with this optimum ejector was operated successfully.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

A Study on the Reinforcing Effect Analysis of Aging Reservoir Reinforced with Surface Stabilizer (표층안정재로 보강된 노후 저수지의 보강효과 분석에 관한 연구)

  • Park, Seonghun;Seo, Segwan;Cho, Daesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.5-14
    • /
    • 2020
  • This study analyzed the reinforcement effect by conducting laboratory test, model test and program analysis to utilize the surface stabilizer used for the restoration work of collapsed slopes as a reinforcing material for aging reservoirs that exhibits a curing reaction similar to cement. Based on the results of the laboratory test, a model test and program analysis were performed by applying 9% of the mixing ratio. As a result, when the surface stabilizer was used in aging reservoir, it was found that the flow of water only occurred on part of the slope and underground in reservoir. And the water flow could be reduced inside the reservoir. In addition, it was analyzed that the seepage discharge could be reduced by about 42% and the saturated area within the reservoir by about 73%, thereby securing the stability of the aged reservoir.

Reinforcing Effect of Dredged Marine Clay Mixed with Micro-Fiber (Micro-Fiber 흔라네 의한 준설해성점토의 보강효과)

  • 박영목;우문정;허상목;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.75-81
    • /
    • 2003
  • To investigate the reinforcing effect of subsurface layers of marine dredged clay(DMC) mixed with the micro-fiber(MF), a series of laboratory tests were performed on the DMC specimens with and without MF through uniaxial and triaxial compression tests. For the test programme, the elapsed time after dredging of marine clay, mixing rate and length of MF, and curing time of the composite were chosen as the important factors affecting the strength behaviour. The strength of the DMC mixed with MF and waste lime(WL) used for the admixture was found to be enhanced with the increasing content and length of MF, and with decreasing water content of DMC. MF and WL were applied as materials for trafficability improvement of the very soft reclaimed ground by DMC.

Influence of Mixing Conditions on the Strength of Solidified Sandy Soils with Cement (배합조건이 시멘트혼합 사질토의 강도에 미치는 영향)

  • Yoo, Chan;Chang, Pyung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • Laboratory experiment was performed to evaluate the influence of mixing conditions to the strength of solidified sandy soils with cement. The major physical factors considered in this experiment were the fine particles content(<$\sharp200%$), cement content(%) and water-cement ratio, and unconfined compressive strength test was performed on the samples at 7 and 28 cured day. The results of tests shows that when the cement content is relatively low (7~10 percents) the fine content in the sandy soils is very important, but when cement content is high the water-cement ratio became more important. It was appeared that in the range of the cement content of 7~10 percents, about 20~30 percents of fine content to the total sample weight is the optimum condition to get the maximum strength. In the case of the cement content of 13 percents, the strength of sample was considerably affected by the water-cement ratio rather than the fine content. In this paper, empirical equations were also developed and evaluated to verify the relationship among three factors by the multi-regression analysis.

  • PDF

Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips

  • Keskin, Mehmet Salih;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.249-262
    • /
    • 2014
  • Tire chips and tire chips-soil mixtures can be used as alternative fill material in many civil engineering applications. In this study, the potential benefits of using tire chips as lightweight material to improve the bearing capacity and the settlement behavior of sand slope was investigated experimentally. For this aim, a series of direct shear and model loading tests were conducted. In direct shear tests, the effect of contents of the tire chips on the shear strength parameters of sand was investigated. Different mixing ratios of 0, 5, 10, 15 and 20% by volume were used and the optimum mixing ratio was obtained. Then, laboratory model tests were performed on a model strip footing on sand slope reinforced with randomly distributed tire chips. The loading tests were carried out on sand slope with relative density of 65% and the slope angle of $30^{\circ}C$. In the loading tests the percentage of tire chips to sand was taken as same as in direct shear tests. The results indicated that at the same loading level the settlement of strip footing on sand-tire chips mixture was about 30% less than in the case of pure sand. Addition of tire chips to sand increases BCR (bearing capacity ratio) from 1.17 to 1.88 with respect to tire chips content. The maximum BCR is attained at tire chips content of 10%.

Experimental study on flow field behind backward-facing step using detonation-driven shock tunnel

  • Kim, T.H.;Yoshikawa, M.;Narita, M.;Obara, T.;Ohyagi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.85-92
    • /
    • 2004
  • As a research to develop a SCRAM jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. Further-more, SCRAM jet engine model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique and high speed video camera. The fuel was injected perpendicular to the flow of Mach number three behind backward-facing step. The height of the step, distance of injection and injection pressure were changed to investigate the effects of step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind the step.

  • PDF

Analysis of the Waterproof and Reinforcement Effect according to Slope Improvement of Aging Reservoir using Supplementary Cementitious Material (시멘트 대체재료를 사용한 노후 저수지의 사면 개량에 따른 차수 및 보강 효과 분석)

  • Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.30-39
    • /
    • 2022
  • In this study, laboratory test, program analysis, and test construction in the field were performed to utilize Supplementary Cementitious Material (SCM) developed by recycled resources for slope reinforcement as slope improvement material for aging reservoir, and the results were analyzed. As results of the laboratory test, it was analyzed that the mixing ratio of SCM was appropriate by 9 %, and the coef. of permeability was decreased by about 10,000times, indicating a value close to that of the waterproof material applied in Korea. In addition, as a result of program analysis and test construction, it was analyzed that seepage did not occur in the part of reinforced using SCM and showed a higher safety facto r than domestic criteria. Therefore, since it shows sufficient waterproof and reinforcing effects in aging reservoir, it is judged that the slope improvement using SCM can replace the cement for repair and reinforcement method.

Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay (해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측)

  • Jeon, Je-Sung;Park, Min-Chul;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.45-56
    • /
    • 2013
  • Abrams equation could be effectively applied to predict strength of cement-admixed clay and clay-water content to cement content ratio is a fundamental parameter for governing strength. This paper analyses unconfined compression strength varying with $w_c/C$ and curing time using laboratory test results. An attempt is made to identify strength of composite soil of cement and clay according to variation of Abrams coefficients and curing time. The value B, which was considered to be constant value in past researches, needs to be considered as parameter variable with curing time. From Abrams equation a correlation was formed for unconfined compression strength with mixing conditions by $w_c/C$ and curing time as dependent variable. Regression results in this paper could be used to predict strength of cement-admixed clay at various mixing conditions.