• Title/Summary/Keyword: Laboratory mixing test

Search Result 156, Processing Time 0.023 seconds

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures (지연다짐이 Soil-Cement의 압축강도에 미치는 영향)

  • 정일웅;김문기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study

  • Gabriela Leite de Souza;Thamara Eduarda Alves Magalhaes;Gabrielle Alves Nunes Freitas;Nelly Xiomara Alvarado Lemus;Gabriella Lopes de Rezende Barbosa;Anielle Christine Almeida Silva;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.38.1-38.15
    • /
    • 2022
  • Objectives: This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods: The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results: ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions: ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.

A study on the fixation of heavy metals with modified soils in the landfill liner (개량혼합토를 이용한 폐기물 매립지 차수층의 중금속 고정능력에 관한 연구)

  • 노회정;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • The authors selected the modified soil method, and then performed the geotechnical and environmental laboratory test, and evaluated whether the modified soil liner could be accepted as a barrier layer in landfill. Unlike the results of the natural soil(CL), those of the hydraulic conductivity test of stabilized soil met the standard value. According to these results, the optimal mixing ratio of a mixture(cement : bentonite : stabilizing agent) was 90 : 60 : 1 with mass ratio(kg) for 1㎥ with soil, and it was possible to use poor quality bentonite. B\circled2 because of a little difference from results with high quality bentonite. B\circled1. The Cation Exchange Capacity(CEC) of the modified soil was increased about 1.5 times compared with the natural soil; however. the change of CEC with a sort of additives was not detected. In order to observe the change of the chemical components and crystal structures, the natural and the modified soils with the sorts of additives were measured by the XRF(X-Ray Flourescence Spectrometer) and SEM, but there was no significant change. The artificial leachate with the heavy meals ($Pb^{2+}$ , $Cu^{2+}$, $Cd^{2+}$ Zn$^{2+}$ 100mg/L) was passed through the natural soil and modified soils in columns. In the natural soil, Cd$^{2+}$ and $Zn^{2+}$ were identified, simultaneously the pH of outflow was lower, and then came to the breakthrough point. The removal efficiency of the natural soil was showed in order of following : $Pb^{2+}$$Cu^{2+}$ > $Zn^{2+}$ > $Cd^{2+}$ On the other hand, modified soils were not showed the breakthrough condition like the result of the natural soil. The modified soil with the lower quality bentonite, B\circled2(column3) was more stable with respect to chemical attack than that with the higher bentonite, B\circled1(column2) because the change range of outflow pH in columns was less than that of outflow pH in column2. In addition, the case of adding the stabilizing agent(column4) was markedly showed the phenomena.ena.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF