• Title/Summary/Keyword: Laboratory measurement

Search Result 1,949, Processing Time 0.03 seconds

Comparison of Methods for Measuring Histamine by ELISA and HPLC-MS Assay In Vitro (In Vitro에서 히스타민 측정 시 ELISA법과 HPLC-MS 분석법의 비교)

  • Lee, In Hee;Kim, Yoo Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.306-312
    • /
    • 2015
  • The measurement of histamine is to determine the degree of allergy because the allergic reaction can lead to the release of histamine. In general, the antigen-antibody reaction was quantified by measuring absorbance using a microplate reader. In this study, we compare the method using a general antigen-antibody reaction and the method using a high performance liquid chromatography mass spectrometer (HPLC-MS) of chemical analysis in the measurement of histamine secretion. The cell line used was RBL-2H3, an allergic reaction was induced by stimulation with C48/80 (compound 48/80). Allergy-induced cells degranulation rate was confirmed by measurement of ${\beta}$-hexosaminidase and cytotoxicity was performed for the validity of the experiment. The quantitative determination of histamine showed a significant difference, since the quantitative limit of the measurement by the antigen-antibody reaction was 10.257 ppm while the quantitative limit of the measurement by HPLC-MS was 0.020 ppm. Measurement of histamine in allergic activity and anti-allergy tests showed that the HPLC-MS analysis rather than the analysis of the antigen-antibody reaction is a more precise and accurate test.

Difference of The Cardiac Structure and Function Depending on Obesity Level of Healthy Adults

  • Shin, Kyung-A;Hong, Seung-Bok
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The purpose of this study was to find out any difference and correlation between the cardiac structure and its function according to the level of obesity as evaluated by waist measurement and BMI (body mass index) in healthy adults. For research subjects, the study selected a final 519 subjects excluding 198 subjects aged 55 or over out of 717 subjects who received echocardiography through a medical checkup at J General Hospital. For the criteria for obesity, men were defined as being obese in case their waist measurement was over 90 cm, whereas women were defined as being obese in case their waist measurement was over 80 cm. Also, regarding the BMI criteria, in case a person's BMI was 30 kg/$m^2$, the subject was classified as belonging to an obese group, and in case a person's BMI was between 25 kg/$m^2$ and 30 kg/$m^2$, the subject was classified as belonging to an overweight group. Concerning the evaluation of cardiac structure and function, they were evaluated using two-dimensional, M-mode, doppler echocardiography. According to the stage of obesity in accordance with waist measurement and BMI, the cardiac structure showed both eccentric and centripetal changes, and the cardiac function was also discovered to show differences according to the stage of obesity. In addition, also in the overweight group, which is a prior stage to obesity, out of the criteria for obesity classification according to BMI, there were differences in the cardiac structure and function. Also, both the waist measurement and BMI were found to have a correlation with cardiac structure and diastolic function. Consequently, cardiac structure and function are correlated with BMI and waist measurement, which are anthropometrical variables, and obesity is assumed to induce not only structural change but also functional change of the heart.

Proficiency Test of Water Flow Rate for Measurement Equivalence Among KOLAS Accredited Laboratories (KOLAS 교정기관의 측정동등성 확립을 위한 물유량 숙련도 시험)

  • Chun, Sejong;Yoon, Byung-Ro;Kim, Soo-Jin
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • KOLAS (KOrea Laboratory Accreditation Scheme) belongs to APLAC (Asia Pacific Laboratory Accreditation Cooperation). KOLAS manages the accreditation scheme for measurement traceability to SI units. As per June 2016, there are 22 KOLAS laboratories for liquid flow metering. Among them, 12 laboratories participated in the proficiency test (PM2015-08) for water flow metering, organized by KASTO (Korea Association of Standards and Testing Organizations). This proficiency test was performed with three kinds of flow ranges ($3.6m^3/h{\sim}12m^3/h$, $40m^3/h{\sim}80m^3/h$, $40m^3/h{\sim}200m^3/h$) considering the CMC (calibration and measurement capability) of the participating laboratories. The purpose of the proficiency test was to find out measurement equivalence of the CMC's between each participating laboratory and the reference testing laboratory (KRISS). The measurement equivalence was tested by the number of equivalence ($E_n$). If ${\mid}E_n{\mid}$ < 1, the measurement equivalence was established. All the participating laboratories passed this proficiency test.

QUANTITATIVE MONITORING OF TISSUE OXYGENATION BY TIME-RESOLVED SPECTROSCOPY

  • Yamashita, Yutaka;Oda, Motoki;Ohmae, Etsuko;Tsuchiya, Yutaka
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2101-2101
    • /
    • 2001
  • Near-infrared spectroscopy is now being used in clinical diagnosis as a non-invasive monitor of tissue oxygenation state. However, due to lack of the optical pathlength information within tissues, it is still difficult to quantitate the hemoglobin concentration with present CW techniques. Time-resolved spectroscopy (TRS), which measures temporal profiles of emerging light from tissues, enables to estimate the pathlength distribution within tissues by converting time to distance. Consequently, quantitative measurement of tissue oxygenation is possible by analyzing the data with optical diffusion equation 1) or our Microscopic Beer-Lambert law2). Time-Resolved Spectroscopy System : TRS-1O3) Our TRS-10 system consists of a three-wavelength (759, 797, 833 nm) PLP as pulsed light source, a high speed PMT with high sensitivity and three signal-processing circuits for time-resolved measurement (CFD/TAC, A/D converter and histogram memory). Optical pulse train consisting of 759, 797 and 833nm is generated by PLP at 5㎒ repetition rate and irradiated a sample through a single optical fiber. The diffuse-reflected light from the sample is collected by a bundle fiber and then detected by the PMT for single photon measurement. After being amplified by a following fast amplifier, the electrical signals for each wavelength are picked out by CFD/TAC module. Then, a signal processing circuit integrated the TRS data for each wavelength individually. The simultaneous TRS measurement for three wavelengths achieved without any optical or mechanical switch. Experiment and Results Input and detection fibers of TRS-10 were attached at the human forehead with a fiber separation of 3cm. TRS measurements were continuously performed for about 20 minutes including 2 minutes hyper ventilation. It was observed that the total hemoglobin concentration was decreasing during the hyper ventilation and recovered until 2 minutes after hyper ventilation. On the other hand, the deoxy-hemoglobin concentration began to increase after hyper ventilation and had its peak at around 2 minute later, showing 502 drop from 75% to 60% due to inhibition of breathing by performing hyper ventilation. The results showed that this system might be able to quantitate the concentrations of oxy- and deoxy-hemoglobin in the human brain.

  • PDF

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

Comparison of LDL-Cholesterol direct measurement with the estimate using various formula

  • Kwon, Se Young;Na, Young-Ak
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Low-Density Lipoprotein cholesterol (LDLC) is the most important marker for the treatment of hyperlipidemia in NCEP-ATP III(National Cholesterol Education Program-Adult Treatment Panel III) guideline. Therefore, LDL cholesterol is pathologically meaningful, accurate measurement should be a top priority. Currently, LDLC is directly measured in most cases, but, the estimate is still used in mass health examination or screening test. This study is about the comparison of LDL-Cholesterol direct measurement with the estimate using various formula (Friedewald: [LDL-F=TC-HDL-TG/5], Nakajima: [LDL-N=TC-HDL-TG/4], Hattori: [LDL-H =0.94TC-0.94HDL-0.19TG], Puavilai: [LDL-P=TC-HDL-TG/6], Carvalho: [LDL-C=3(TC-HDL)/4]) for calculating more accurate value. We analyzed total cholesterol (TC), try-glyceride (TG), high-density lipoprotein cholesterol (HDLC), and LDLC levels of 210 subjects between June and November in 2011. Until now, the Friedewald formula is the most commonly used estimate for the LDLC. When Friedewald formula was applied, the correlation coefficient (r) was 0.940, showing high correlation. But, the result of the direct method was significantly different, compared with those of the Friedewald formula in triglyceride levels ${\geq}400mg/dL$(p<0.05). There was the highest correlation when we used LDL-P formula(r=0.947) in triglyceride levels <400 mg/dl. Also there was the lowest mean difference regardless of triglyceride level. Therefore, the study showed that TG/6 is more precise means of calculation than TG/5. On the other hand, the calculation of LDL-Cholesterol was underestimated, compared with direct measurement. It is necessary to have more data and modified Friedewald formula should be used for the accurate calculation.

  • PDF

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Studies on the Standardization of pH Measurement System (pH 측정 시스템의 표준화에 관한 연구)

  • Lee, Hwa Shim;Kim, Myung Soo;Kim, Jin Bok;Oh, Sang Hyup
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.432-442
    • /
    • 1998
  • Since the definition of pH, $pH=-Ioga_H$ is based on a single ion activity, pH values can not be determined with measurement itself, but require an approximation method. They are derived from EMF measurement of a liquid junction free cell using hydrogen and Ag/AgCl electrodes. Primary standard materials with certified pH values can be obtained with this approximation method. Standard buffer solutions are used to calibrate pH meters. Thus the accuracy of the pH values of standard buffer solutions limits the reliability of measured pH values can be obtained with this approximation method. Standard buffer solution are used to calibrate pH meters. Thus the accuracy of the pH values of standard buffer solutions limits the reliability of measured pH values of sample solutions. To certify the pH values, we have established the system for the primary standard measurement and certified the pH of buffer solutions in the range of 1.6∼12.5 pH unit within uncertainty of ${\pm}0.005$ pH unit.

  • PDF

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

Work Environment Measurement Results for Research Workers and Directions for System Improvement (연구활동종사자 작업환경측정 결과 및 제도개선 방향)

  • Hwang, Je-Gyu;Byun, Hun-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 2020
  • Objectives: The characteristics of research workers are different from those working in the manufacturing industry. Furthermore, the reagents used change according to the research due to the characteristics of the laboratory, and the amounts used vary. In addition, since the working time changes almost every day, it is difficult to adjust the time according to exposure standards. There are also difficulties in setting standards as in the manufacturing industry since laboratory environments and the types of experiments performed are all different. For these reasons, the measurement of the working environment of research workers is not realistically carried out within the legal framework, there is a concern that the accuracy of measurement results may be degraded, and there are difficulties in securing data. The exposure evaluation based on an eight-hour time-weighted average used for measuring the working environment to be studied in this study may not be appropriate, but it was judged and consequently applied as the most suitable method among the recognized test methods. Methods: The investigation of the use of chemical substances in the research laboratory, which is the subject of this study, was conducted in the order of carrying out work environment measurement, sample analysis, and result analysis. In the case of the use of chemical substances, after organizing the substances to be measured in the working environment, the research workers were asked to write down the status, frequency, and period of use. Work environment measurement and sample analysis were conducted by a recognized test method, and the results were compared with the exposure standards (TWA: time weighted average value) for chemical substances and physical factors. Results: For the substances subject to work environment measurement, the department of chemical engineering was the most exposed, followed by the department of chemistry. This can lead to exposure to a variety of chemicals in departmental laboratories that primarily deal with chemicals, including acetone, hydrogen peroxide, nitric acid, sodium hydroxide, and normal hexane. Hydrogen chloride was measured higher than the average level of domestic work environment measurements. This can suggest that researchers in research activities should also be managed within the work environment measurement system. As a result of a comparison between the professional science and technology service industry and the education service industry, which are the most similar business types to university research laboratories among the domestic work environment measurements provided by the Korea Safety and Health Agency, acetone, dichloromethane, hydrogen peroxide, sodium hydroxide, nitric acid, normal hexane, and hydrogen chloride are items that appear higher than the average level. This can also be expressed as a basis for supporting management within the work environment measurement system. Conclusions: In the case of research activity workers' work environment measurement and management, specific details can be presented as follows. When changing projects and research, work environment measurement is carried out, and work environment measurement targets and methods are determined by the measurement and analysis method determined by the Ministry of Employment and Labor. The measurement results and exposure standards apply exposure standards for chemical substances and physical factors by the Ministry of Employment and Labor. Implementation costs include safety management expenses and submission of improvement plans when exposure standards are exceeded. The results of this study were presented only for the measurement of the working environment among the minimum health management measures for research workers, but it is necessary to prepare a system to improve the level of safety and health.