• Title/Summary/Keyword: Laboratory chamber test

Search Result 102, Processing Time 0.029 seconds

Distribution of Excess Porepressure caused by PCPT into OC clay

  • Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.312-333
    • /
    • 2006
  • This paper presents the results of an analysis of the excess porewater pressure distribution due to piezocone penetration in overconsolidated clays. From piezocone test results for moderately and heavily overconsolidated clays, it was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically to the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. The equation developed in this study based on the modified Cam clay model and the cylindrical cavity expansion theory, which take into consideration the effects of the strain rate and stress anisotropy, provide a good prediction of the initial porewater pressure at the piezocone location. The method of predicting the spatial distribution of excess porewater pressure proposed in this study is based on a linearly increasing ${\Delta}u_{shear}$. In the shear zone and a logarithmically decreasing ${\Delta}u_{oct}$, and is verified by comparing with the excess porewater pressure measured in overconsolidated specimens at the calibration chamber.

  • PDF

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N 코팅 스퍼기어의 마찰${\cdot}$마모 특성에 관한 연구)

  • Lu Long;Lyu Sung-ki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficients of C-N coating and TiN coaling decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about $500^{\circ}C$ results in a tempering of base material that causes microstructure change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

  • PDF

Change in Spatial Dispersion of Daphnia magna(Cladocera: Daphniidae) Populations Exposed to Organophosphorus Insecticide, Diazinon (유기인계 살충제 (다이아지논)에 대한 물벼룩, Daphnia magna (Cladocera: Daphniidae) 개체군의 공간분산 변이)

  • Lee, Sang-Hee;Ji, Chang-Woo;Chon, Tae-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.231-240
    • /
    • 2009
  • We explored collective behaviors of indicator species to elucidate the effect of the chemical stress. After the treatments of an insecticide, diazinon, at low concentrations (1.0 and 10.0 ${\mu}g/L$), spatial dispersion patterns of Daphnia magna were checked in a test chamber. The I-index was used to characterize the movement data before (0~1 h) and after (1~2 h) the treatments in laboratory conditions. The slopes of the frequency distribution of I-index in semi-log scale decreased significantly, and the test populations appeared to be more dispersed with a lower degree of aggregation after the treatments. The index was feasible in indicating decrease in the ability of the specimens to keep desirable distances with neighbor individuals under chemical stress and showed a possibility of monitoring presence of toxic chemicals in environment through group behavior measurement.

Disturbance Effects of Field $V_S$ Probe (현장 전단파 속도 프로브의 교란효과)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Lee, Woo-Jin;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.605-612
    • /
    • 2008
  • The shear wave velocity ($V_s$) has been commonly used to evaluate the dynamic properties of soil. The field $V_s$ probe (FVP) was already developed to assess the shear stiffness of a soft clay. The objective of this study is to investigate the disturbance effects of the FVP due to the penetration. The laboratory tests are conducted in a large-scale consolidometer (calibration chamber). The reconstituted clay is mixed at the water content of 110% using a slurry mixer. The FVP and down-hole test are carried out every 1cm interval to compare the data. In addition, two square rods with transducers are also implemented to get the reference value. The shear waves evaluated by the FVP, dow-hole tests, and reference rods are closely matched. This study suggests that the disturbance effect of the FVP due to the penetration into the soft clay soils is small enough and the $V_s$ evaluated by the FVP reflects well the in-situ characteristics. Furthermore, the combination of the FVP and down-hole test shows the possibility of hybrid equipment.

  • PDF

Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments) (아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.

Peliminary Performance Test for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.4-37.4
    • /
    • 2010
  • KASI is developing the MIRIS (Multi-purpose IR Imaging System), as the main payload of Science and Technology Satellite-3 (STSAT-3). The Engineering Qualification Model (EQM) of the MIRIS has been recently fabricated, and Flight Model (FM) is now in final development stage. The system performance tests have been made mainly with EQM, and partly with FM in the laboratory, including opto-mechanics test, vibration test, thermal-vacuum test and passive cooling test down to 200K, using a thermal controlled vacuum chamber. Most of the system performance test results of the MIRIS are satisfied with the required specifications and its results were reflected in development of the FM with several revisions of the system design. In this paper, we present detailed system performance test procedures of the MIRIS and its results.

  • PDF

Development of Comprehensive performance test equipment to confirm the performance of small radar systems (소형 추적 레이다 시스템 성능확인을 위한 종합성능시험 장비 개발)

  • Hong-Rak Kim;Youn-Jin Kim;Seong-Ho Park;Man Hee LEE;Da-Been LEE
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • The compact tracking radar system is a pulsed radar tracking system that searches, detects, and tracks targets in real time against aircraft targets with a small RCS(Radar Cross Section) maneuvering at high speed. This paper describes the development of comprehensive performance test equipment to verify the performance of the radar system in a anechoic chamber environment. Describes the design and manufacture of comprehensive performance test equipment to meet requirements, including the generation of simulated target signals to simulate aircraft target signals to verify performance in the laboratory environment of radar systems. It also describes a GUI(Graphic User Interface) program to check performance through a test in conjunction with the tracking radar system. Verify the comprehensive performance test equipment implemented through the performance test.

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration

  • Park, Sung-Geon;Bae, Yoon-Jung;Lee, Yong-Soo;Kim, Byeong-Jo
    • Nutrition Research and Practice
    • /
    • v.6 no.2
    • /
    • pp.126-131
    • /
    • 2012
  • The purpose of this study was to determine the effects of beverage temperature and composition on weight retention and fluid balance upon voluntary drinking following exercise induced-dehydration. Eight men who were not acclimated to heat participated in four randomly ordered testing sessions. In each session, the subjects ran on a treadmill in a chamber maintained at $37^{\circ}C$ without being supplied fluids until 2% body weight reduction was reached. After termination of exercise, they recovered for 90 min under ambient air conditions and received one of the following four test beverages: $10^{\circ}C$ water (10W), $10^{\circ}C$ sports drink (10S), $26^{\circ}C$ water (26W), and $26^{\circ}C$ sports drink (26S). They consumed the beverages ad libitum. The volume of beverage consumed and body weight were measured at 30, 60, and 90 min post-recovery. Blood samples were taken before and immediately after exercise as well as at the end of recovery in order to measure plasma parameters and electrolyte concentrations. We found that mean body weight decreased by 1.8-2.0% following exercise. No differences in mean arterial pressure, plasma volume, plasma osmolality, and blood electrolytes were observed among the conditions. Total beverage volumes consumed were $1,164{\pm}388$, $1,505{\pm}614$, $948{\pm}297$, and $1,239{\pm}401$ ml for 10W, 10S, 26W, and 26S respectively ($P$ > 0.05). Weight retention at the end of recovery from dehydration was highest in 10S ($1.3{\pm}0.7kg$) compared to 10W ($0.4{\pm}0.5kg$), 26W ($0.4{\pm}0.4kg$), and ($0.6{\pm}0.4kg$) ($P$ < 0.005). Based on these results, carbohydrate/electrolyte-containing beverages at cool temperature were the most favorable for consumption and weight retention compared to plain water and moderate temperature beverages.

Development and Verification of 4-Electrode Resistivity Probe (4전극 전기비저항 탐사장비의 개발 및 검증)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Jung, Soon-Hyuck;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.127-136
    • /
    • 2009
  • The objective of this study is the development and verification of the 4-electrode resistivity probe (4ERP) for the estimation of electrical properties of the saturated soils. The 4ERPs with wedge and plane types are manufactured to obtain the electrical resistivity without polarization at the electrodes by using Wenner array. The wedge type is for the penetration into the soil samples and the plane type is for the installation into the cells used for the laboratory tests. The consolidation tests are carried out by using 6 types of glass beads and 3 types of sands in size. The test results show that the electrical resistivity increases with a decrease in the porosity, and the constant m used in Archie's law is dependent on the particle shape rather particle size. The one dimensional liquefaction tests show that the porosity obtained by the 4ERP is similar to that determined by the volume fraction. The penetration of the 4ERP into the large scale calibration chamber produces the resistivity profiles. This study demonstrates that the 4ERP may effectively estimate the porosity of the saturated soils.