• 제목/요약/키워드: Laboratory Safety Manual

검색결과 20건 처리시간 0.021초

콘크리트 터널 라이닝 균열검사 시스템 개발에 관한 연구 (Development of Inspection System for Crack on the Lining of Concrete Tunnel)

  • 고봉수;손영갑;신동익;김병화;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.66-72
    • /
    • 2004
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors, who observe cracks with their naked eyes and record them. But manual inspection is slow, and measured crack data is subjective. Therefore, this study proposes inspection system fur measuring cracks in tunnel lining and providing objective crack data to be used in safety assessment. The system consists of On-vehicle system and Laboratory system. On-Vehicle system acquires image data with line CCD camera on scanning along the tunnel lining. Laboratory system extracts crack information from the acquired image using image processing. Measured crack information is crack thickness, length and orientation. To improve accuracy of crack recognition, the geometric properties and patterns of cracks in concrete structure were applied to image processing. The proposed system was verified with experiments in both laboratory environment and field environment such as subway tunnel.

화학 및 화학공학 실험실의 안전관리 시스템 개발 (Development of Laboratory Safety Management System for Chemistry and Chemical Engineering Laboratory)

  • 유진환;이헌석;최정우;서재민;박철환;고재욱
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.376-382
    • /
    • 2008
  • 안전성 향상을 위한 노력에도 불구하고 연구실험실에서의 화재, 폭발 등 각종 사고가 지속되고 있으며, 이에 따른 인명 및 재산 손실 또한 상당한 수준에 이르고 있다. 실험실 사고는 비슷한 유형의 사고가 주기적으로 반복되는 특성을 가지고 있으며, 안전성 향상을 위한 예방적 차원의 안전관리 체계가 절실하게 요구된다. 연구실험실 종사자들은 앞으로 국가의 과학기술 발전에 이바지할 젊은 과학자들로서 국가적 관점에서 상당한 손실이 아닐 수 없다. 따라서 본 연구에서는 과거의 사고 및 연구실 안전관리에 대한 연구의 분석결과를 기반으로 연구실험실에 상존하는 잠재적 위험성 저감 및 안전성 향상을 위해 요구되는 안전관리 중점요소들을 파악하였다. 궁극적으로 근본적인 실험실 안전성 향상을 위해 실험실 안전관리 매뉴얼, 실험실과 관련한 관리 시스템, 교육관리 시스템, 화학물질관리 시스템 및 실험실 자체안전점검 시스템으로 이루어진 화학 및 화학공학 실험실에 적합한 실험실 안전관리 시스템을 제안하여 실험실의 안전성 향상을 꾀하고자 하였다.

보조기층재로서 폐콘크리트의 안정성에 관한 연구 (A Study on the Stability of the Waste Concrete as the Subgrade Materials)

  • 김태봉;박원철;서상구;안상로
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.160-167
    • /
    • 1996
  • The construction waste concrete produce from the demolished concrete structures. These waste concrete materials are useful and valuable for fill and subgrade and are considered to use as the subgrade material of the road. To use the subgrade of the road with the waste concrete, the several experiments involved with compaction test and laboratory C. B. R. etc. are performed. These experiments are compared with criteria of the road construction manual. It is shown that the quality of the construction waste concrete satisfies that of the subgrade mentioned in the road construction manual.

  • PDF

대학의 연구실 안전환경관리자 선임기준 합리화 방안 (A Study for Rationalization of Appointment Criteria to Laboratory Safety Managers in Universities and Colleges)

  • 강미진
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.127-133
    • /
    • 2012
  • This paper shows survey result on safety management status of laboratories in Korea. In Korea, many studies and reports on laboratory safety have been published since the ministry of education, science and technology (MEST) enforced the Act on Establishing a Safe Environment of Laboratories (Lab Safety Act) in 2006. The MEST has surveyed status of safety management in institutions subject to Lab Safety Act in 2008 and 2010. According to the survey result, safety management status of universities and colleges has been improved on several factors such as establishment of safety manual and implementation of safety inspection; while the number of safety managers of universities and colleges have increased. However, the difficulties in performing duties of safety managers has increased because the number of exclusive safety managers has decreased. This paper identifies the similarities and differences between Occupational Safety and Health Act and Lab Safety Act on assignment and duties of safety managers; therefore, this paper suggests a standard to determine the number of safety managers and decide whether or not their duties should be exclusive. Besides current standard that is based on the number of researchers, the number of individual laboratories should be considered. The new method would be helpful to determine the number of exclusive safety managers because the amount of safety managers' duties generally do not depend on only the number of people who may be exposed to any risk but also the number of facilities that may be cause of any accident.

Machine Vision Technique for Rapid Measurement of Soybean Seed Vigor

  • Lee, Hoonsoo;Huy, Tran Quoc;Park, Eunsoo;Bae, Hyung-Jin;Baek, Insuck;Kim, Moon S.;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제42권3호
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: Morphological properties of soybean roots are important indicators of the vigor of the seed, which determines the survival rate of the seedlings grown. The current vigor test for soybean seeds is manual measurement with the human eye. This study describes an application of a machine vision technique for rapid measurement of soybean seed vigor to replace the time-consuming and labor-intensive conventional method. Methods: A CCD camera was used to obtain color images of seeds during germination. Image processing techniques were used to obtain root segmentation. The various morphological parameters, such as primary root length, total root length, total surface area, average diameter, and branching points of roots were calculated from a root skeleton image using a customized pixel-based image processing algorithm. Results: The measurement accuracy of the machine vision system ranged from 92.6% to 98.8%, with accuracies of 96.2% for primary root length and 96.4% for total root length, compared to manual measurement. The correlation coefficient for each measurement was 0.999 with a standard error of prediction of 1.16 mm for primary root length and 0.97 mm for total root length. Conclusions: The developed machine vision system showed good performance for the morphological measurement of soybean roots. This image analysis algorithm, combined with a simple color camera, can be used as an alternative to the conventional seed vigor test method.

An intelligent optimization method for the HCSB blanket based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network

  • Wen Zhou;Guomin Sun;Shuichiro Miwa;Zihui Yang;Zhuang Li;Di Zhang;Jianye Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3150-3163
    • /
    • 2023
  • To improve the performance of blanket: maximizing the tritium breeding rate (TBR) for tritium self-sufficiency, and minimizing the Dose of backplate for radiation protection, most previous studies are based on manual corrections to adjust the blanket structure to achieve optimization design, but it is difficult to find an optimal structure and tends to be trapped by local optimizations as it involves multiphysics field design, which is also inefficient and time-consuming process. The artificial intelligence (AI) maybe is a potential method for the optimization design of the blanket. So, this paper aims to develop an intelligent optimization method based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network to solve these problems mentioned above. This method has been applied on optimizing the radial arrangement of a conceptual design of CFETR HCSB blanket. Finally, a series of optimal radial arrangements are obtained under the constraints that the temperature of each component of the blanket does not exceed the limit and the radial length remains unchanged, the efficiency of the blanket optimization design is significantly improved. This study will provide a clue and inspiration for the application of artificial intelligence technology in the optimization design of blanket.

우리나라 미생물 실험실의 생물안전현황 (Biosafety of Microbiological Laboratories in Korea)

  • 은상준;박기동;김종균;임정수;황유성;김용익;이진용
    • Journal of Preventive Medicine and Public Health
    • /
    • 제38권4호
    • /
    • pp.449-456
    • /
    • 2005
  • Objectives : The biosafety level (BSL) practiced in microbiology laboratories in Korea according to the laboratory biosafety manual published by the World Health Organization (WHO) was evaluated using the data obtained by a survey. Methods : Under the advise of Clinical Laboratory Physicians, 144 types of microorganisms were screened based on the guidelines of biosafety in microbiological and biomedical laboratories published by the US Center for Disease Control and Prevention and classified into 1-4 risk groups. A questionnaire containing 21 questions in 5 areas was developed using the biosafety manual by published WHO. Of the 1,876 different organizations sent the survey, 563 responded to the survey (response rate: 30.0%). The species of microoganisms handled by as well as the biosafety level in microbiology laboratories were analyzed. Results : There were 123 species of microorganisms handled in microbiology labs in Korea. The BSL required in 512 microbiology labs was answered by the survey responders as the first grade in 33 labs (6.4%), 2nd in 437 (85.4%), 3rd in 42 (8.2%), and 4th in none. The average number of items satisfied was 12.2, showing only a 57.9% satisfactory rate and normal distribution. Conclusions : The state of overall observance of BSL in most microbiology labs of Korea was evaluated as lagging compared with the standard set up by WHO. Therefore, the Korean government need to produce and distribute a biosafety manual in microbiology laboratories and make efforts to prevent this threat through measures such as training in biosafety in microbiology labs.

A review on the risk, prevention and control of cooling water intake blockage in coastal nuclear power plants

  • Heshan Lin;Shuyi Zhang;Ranran Cao;Shihao Yu;Wei Bai;Rongyong Zhang;Jia Yang;Li Dai;Jianxin Chen;Yu Zhang;Hongni Xu;Kun Liu;Xinke Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.389-401
    • /
    • 2024
  • In recent decades, numerous instances of blockages have been reported in coastal nuclear power plants globally, leading to serious safety accidents such as power reduction, manual or automatic power loss, or shutdown of nuclear power units. Loss or shortage of cooling water may compromise the reliability of the cooling water system, thus threatening the operational safety of power plants and resulting in revenue reduction. This study provides a comprehensive review of the current state of cooling water system safety in coastal nuclear power plants worldwide and the common challenges they face, as well as the relevant research on cooling water system safety issues. The research overview and progress in investigation methods, outbreak mechanisms, prevention and control measures, and practical cases of blockages were summarized. Despite existing research, there are still many shortcomings regarding the pertinence, comprehensiveness and prospects of related research, and many problems urgently need to be solved. The most fundamental concern involves understanding the list of potential risks of blockages and their spatially distributed effects in surrounding waters. Furthermore, knowledge of the biological cycles and ecological habits of key organisms is essential for implementing risk prevention and control and for building a scientific and effective monitoring system.

정신물리학적 접근방법을 이용한 들기작업의 작업하중 평가에 관한 연구 (A Psychophysical Approach on the Assessment of Lifting Loads)

  • 박현진;옥민우;장성록
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.96-100
    • /
    • 2012
  • Low back pain (LBP) is a major issue in modern industrialized society which is mainly caused by manual material handling (MMH) tasks. The objective of this study was to provide scientific data for establishing work standard for Korean workers throughout the laboratory experiment including some specific lifting tasks. Thirty male college students were recruited as participants. The maximum voluntary contraction (MVC), recommended weight limit (RWL), and psychophysical safety weight using Borg's CR-10 scale were studied. Results showed that the RWL was 8.4% MVC higher than the proposed psychophysical safety weight. Based on this result, it is suggested that the NIOSH lifting equation (NLE) should not be directly applied to Korean without reasonable modifications. The ratio of psychophysical safety weight to MVC was ranged from 20.1 to 26.4%. It is expected that use of the methodology in this study may provide better expectation of the work ability of Korean for reducing lower back pains caused by MMH.

Evaluating direct vessel injection accident-event progression of AP1000 and key figures of merit to support the design and development of water-cooled small modular reactors

  • Hossam H. Abdellatif;Palash K. Bhowmik;David Arcilesi;Piyush Sabharwall
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2375-2387
    • /
    • 2024
  • The passive safety systems (PSSs) within water-cooled reactors are meticulously engineered to function autonomously, requiring no external power source or manual intervention. They depend exclusively on inherent natural forces and the fundamental principles of reactor physics, such as gravity, natural convection, and phase changes, to manage, alleviate, and avert the release of radioactive materials into the environment during accident scenarios like a loss-of-coolant accident (LOCA). PSSs are already integrated into such operating commercial reactors as the Advanced Pressurized Reactor-1000 MWe (AP1000) and the Water-Water Energetic Reactor-1200 MWe (WWER-1200) are adopted in most of the upcoming small modular reactor (SMR) designs. Examples of water-cooled SMR PSSs are the passive emergency core-cooling system (ECCS), passive containment cooling system (PCCS), and passive decay-heat removal system, the designs of which vary based on reactor system-design requirements. However, understanding the accident-event progression and phases of a LOCA is pivotal for adopting a specific PSS for a new SMR design. This study covers the accident-event progression for direct vessel injection (DVI) small-break loss-of-coolant accident (SB-LOCA), associated physics phenomena, knowledge gaps, and important figures of merit (FOMs) that may need to be evaluated and assessed to validate thermal-hydraulics models with an available experimental dataset to support new SMR design and development.