• 제목/요약/키워드: Laboratory/in situ velocity

검색결과 54건 처리시간 0.017초

다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석 (An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials)

  • 김학성;정영훈;목영진;이진욱
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1037-1047
    • /
    • 2013
  • 다짐 에너지에 따른 노반 성토재의 탄성파 속도변화 특성을 규명하기 위하여 다양한 위치에서 채취한 시료를 이용하여 실내 다짐 시험, 실내 탄성파 측정 시험, 현장 탄성파 측정 시험을 실시하였다. 함수비 변화에 따른 압축파와 전단파 속도 변화 곡선은 다짐 곡선과 유사한 형태를 보인다. 다짐에너지가 100 %이상 되는 조건에서는 다짐 에너지가 증가하더라도 습윤 측의 다짐곡선과 탄성파 속도 곡선에 큰 변화가 없다. 압축파의 경우 건조 측에서 건조단위중량이 증가함에 따라 압축파 속도가 선형적으로 증가하는 양상이 나타나지만, 습윤 측에서는 건조단위중량이 증가함에 따라 지수함수의 형태로 압축파 속도가 비선형적으로 증가한다. 현장 시험으로 측정한 탄성파 속도는 구속압이 증가함에 따라 증가하며, 압축파 속도보다는 전단파 속도가 다짐 에너지 수준에 보다 민감하게 변화한다.

전기비저항과 암반분류의 상관관계에 대한 고찰 (A Study on the Correlation Between Electrical Resistivity and Rock Classification)

  • 권형석;황세호;백환조;김기석
    • 지구물리와물리탐사
    • /
    • 제11권4호
    • /
    • pp.350-360
    • /
    • 2008
  • 전기비저항은 땅의 여러 물리적 특성 중의 하나로 전기비저항 탐사, 전기비저항 검층과 실내시험 등을 통해 측정된다. 최근에 전기비저항은 도로나 철도터널의 지보형식 설계에서 미시추구간의 암반등급을 예측하는데 활용되는 등 그 활용도가 증가하고 있다. 전기비저항으로부터 신뢰할 수 있는 암반등급을 추정하기 위해서는 많은 현장시험과 함께 전기 비저항과 암반분류의 상관성에 대한 고찰이 요구된다. 본 연구에서는 먼저 암석시료에 대해 탄성파속도, 탄성계수, 일축 압축강도 등의 암석물성시험과 전기비저항 코어시험을 실시하였다. 시험결과로부터 획득된 전기비저항과 암석물성의 상관성을 분석한 결과 전기비저항이 암석물성과 높은 상관성을 가지고 있음을 확인하였다. 다음으로 일반적인 지반조사에 비해 현저히 많은 12개의 시추공에서 전기비저항 검층을 실시하여, 전기비저항 탐사 및 전기비저항 검층에 의한 전기비저항과 RMR의 상관성을 고찰하였다. 전기비저항 검층은 RMR과 80% 이상의 매우 높은 상관성을 보여 전기비저항을 이용하여 암반등급을 결정하는 방법이 과학적으로 타당하다는 것을 확인하였다. 이에 반해 전기비저항 탐사는 RMR과 20% 내외의 낮은 상관성을 가지는데 이는 단층파쇄대와 같은 저비저항 이상대가 역산에 영향을 미치기 때문으로 상관관계 분석시 신선한 암반, 절리파쇄대, 단층파쇄대로 그룹을 분리하여 상관성을 분석하면 신뢰성 있는 상관식을 도출할 수 있음을 확인하였다.

불포화 토양내에서 가스상 오존 이동특성에 대한 LNAPL과 토양수분의 영향 (Influence of LNAPL and Soil Water on Migration of Gaseous Ozone in Unsaturated Soils)

  • 정해룡;최희철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권6호
    • /
    • pp.63-67
    • /
    • 2005
  • 불포화 토양내에서 가스상 오존의 이동특성에 대한 토양수분과 Light non-aqueous phase liquid (LNAPL)의 영향을 알아보기 토양칼럼실험을 실시하였다 토양수분은 토양입자에 수막을 형성하여 가스상 오존과 토양입자의 직접적인 접촉을 방해하여 오존의 이동을 증가시키는 역할을 하였다. 토양수분이 증가할수록 불포화 토양내의 기-액 접촉면적 감소와 오존의 평균선형유속증가로 인해 오존의 이동속도가 증가하였다. LNAPL로 사용된 디젤유의 경우도 토양 표면에 막(Film)을 형성하여 가스상 오존의 이동을 증가시키는 역할을 하였다. 하지만, 토양 수분과는 반대로 디젤유 농도가 증가할수록 오존의 이동속도는 감소하였다. 토양수분과 LNAPL성분이 동시에 존재할 경우에는 토양입자에 Non-wetting유체로 작용하는 LNAPL에 의해 오존의 이동이 영향을 받는다는 것을 알 수 있었다

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.