본 연구는 광주 지역 대학생을 대상으로 섭식 행동과 영양 상태를 조사하고, 섭식 행동 유형별 영양 상태를 비교하여 이들 요인의 관련성을 분석하고자 수행되었다. 주요 결과는 첫째, 대상자의 성별에 따라 섭식 행동 수준과 유형의 분포는 유의한 차이를 보였다. 여학생이 남학생보다 감정적 섭식과 외부적 섭식 행동 수준이 높았고, 섭식 행동 유형에서 감정적, 절제적, 복합 섭식 유형이 많았다. 둘째, 대상자의 섭식 행동 유형에 따라 영양 상태는 차이가 있었다. 감정적 섭식 유형의 대상자가 절제적 섭식 유형보다 영양 지수가 낮았고, 다양과 식행동 영역에서 유의한 차이를 보였으며, 세부적으로 감정적 섭식 유형이 건강한 식생활에 대한 노력과 주관적 건강 상태, 영양 표시 확인, 식사 전 손 씻기, 물 섭취량에서 절제적 및 복합 유형보다 낮은 수준으로 나타났다. 외부적 섭식 유형의 대상자는 절제적 섭식 유형보다 절제 수준이 유의하게 낮았으며, 라면과 가당 음료에 대한 절제력이 절제적 및 복합 섭식 유형보다 낮은 수준으로 나타났다. 이와 같이 본 연구에서는 대학생의 섭식 행동 유형별로 잠재된 주요 영양 문제를 파악하였고, 유형별 문제 개선을 위한 맞춤 전략을 세우는 데 기여할 것으로 기대한다.
스프레드시트를 활용한 인공신경망 교육을 통해, 비전공자 학부생들은 인공신경망의 동작 원리을 이해하며 자신만의 인공신경망 SW를 개발할 수 있다. 여기서, 인공신경망의 동작 원리 교육은 훈련데이터의 생성과 정답 라벨의 할당부터 시작한다. 이후, 인공 뉴런의 발화 및 활성화 함수, 입력층과 은닉층 그리고 출력층의 매개변수들로부터 계산되는 출력값을 학습한다. 마지막으로, 최초 정의된 각 훈련데이터의 정답 라벨과 인공신경망이 계산한 출력값 간 오차를 계산하는 과정을 학습하고 오차제곱의 총합을 최소화하는 입력층과 은닉층 그리고 출력층의 매개변수들이 계산되는 과정을 학습한다. 스프레드시트를 활용한 인공신경망 동작 원리 교육을 비전공자 학부생 대상으로 실시하였다. 그리고 이미지 훈련데이터와 기초 인공신경망 개발 결과를 수집하였다. 본 논문에서는 12화소 크기의 소용량 이미지로 두 가지 훈련데이터와 해당 인공신경망 SW를 수집한 결과를 분석하고, 수집한 훈련데이터를 Orange 머신러닝 모델 학습 및 분석 도구에 활용하는 방법과 실행 결과를 제시하였다.
이 연구에서는 무인 항공기(Unmanned Aerial Vehicle, UAV)가 캡처한 이미지의 의미론적 토지 피복 분할 성능을 향상시키기 위한 앙상블 학습 기법을 제안하고 있다. 도시 계획과 같은 분야에서 UAV 사용이 증가함에 따라 토지 피복 분할을 위한 딥러닝 분할 방법을 활용한 기술 개발이 활발히 이루어지고 있다. 이 연구는 대표적인 분할 모델인 U-Net, DeepLabV3 그리고 Fully Convolutional Network (FCN)를 사용하여 분할 예측 성능을 개선하는 방법을 제안한다. 제안된 접근 방식은 세 가지 분할 모델의 훈련 손실, 검증 정확도 및 클래스별 점수를 통합하여 앙상블 모델을 개발하고 전반적인 예측 성능을 향상시킨다. 이 방법은 건물, 도로, 주차장, 논, 밭, 나무, 빈 공간, 미분류 영역을 포함하는 일곱 가지 클래스가 있는 토지 피복 분할 문제에 적용하여 평가하였다. 앙상블 모델의 성능은 mean Intersection over Union (mIoU)으로 평가하였으며, 제안된 앙상블 모델과 기존의 세 가지 분할 방법을 비교한 결과 mIoU 성능이 향상되었음이 나타났다. 따라서 이 연구는 제안된 기술이 의미론적 분할 모델의 성능을 향상시킬 수 있음을 확인하였다.
오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.
본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.
신약을 개발하는 한 가지 방법의 하나인 신약 재창출(Drug Repositioning)은 이미 사람들에게 사용할 수 있도록 승인된 약물들이 다른 용도로 사용되도록 하여 새로운 적응증을 발견하는 유용한 방법이다. 최근에는 머신러닝 기술의 발달로 방대한 생물학적 정보를 분석하여 신약 개발에 활용하는 경우가 증가하고 있다. 신약 재창출에 머신러닝 기술을 활용하면 효과적인 치료법을 신속하게 찾아내는 데 도움을 줄 것이다. 현재 심각한 급성 호흡기 증후군인 코로나바이러스(COVID-19)에 의한 신종 질병으로 전 세계가 힘든 시간을 보내고 있다. 이미 임상적으로 승인된 약물의 용도를 변경하는 신약 재창출은 COVID-19 환자를 치료하기 위한 치료제의 대안이 될 수 있다. 본 연구는 머신러닝 기법을 활용하여 신약 재창출 분야에 대한 연구 동향을 살펴보고자 한다. Pub Med에서 웹 스크래핑 기법을 사용하여 'Drug Repositioning'이라는 키워드로 총 4,821건의 논문을 수집하였다. 데이터 전처리 후, 4,419건의 논문을 대상으로 빈도분석, LDA 기반 토픽모델링, Random Forest 분류 분석 및 예측 성능평가를 수행하였다. Word2vec 모델을 기반으로 연관어를 분석하였고, PCA 차원 축소 후 K-Means 군집화하여 레이블을 생성한 후, t-SNE 알고리즘을 이용하여 논문이 형성하고 있는 그룹을 시각화하고, LDA 결과에 계층적 군집화를 적용하여 히트맵으로 시각화하였다. 본 연구는 신약 재창출과 관련된 연구 주제가 무엇인지를 파악하고, 머신러닝 알고리즘을 사용하여 대량의 문헌에서 의미 있는 주제를 도출하고 시각화하는 방법을 제시하였다. 향후 신약 재창출 분야의 연구나 개발 전략을 수립하기 위한 기초자료로 활용되는 데 도움을 줄 것이라고 기대한다.
본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기 위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의 특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로 구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후 테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을 통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한 자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.
합성음의 음질을 향상시키기 위하여 분할된 corpora로부터 합성유닛을 선택하여 사용하는 연속음성합성에서 정확한 음소분할은 매우 중요하다. 일반적으로 음소분할은 사람에 의해 수행되지만 많은 작업량으로 인한 시간적 지연, 일관 성 유지 어려움 등 많은 문제가 발생한다. 이에 따라 음성인식에서 도입된 HMM 기반의 자동음소분할이 음성인식, 음성 합성에서 널리 사용되어지고 있지만 음성전문가의 수작업 결과와 비교할 때 HMM 기반 자동음소분할은 오류가 있고, 이는 합성음 품질의 열화의 주요 원인이 되고 있다. 본 논문에서는 HMM 기반의 자동음소분할기를 사용하여 나타난 자동음소분할 결과와 수작업에 의한 음소분할 결과를 비교하고 유형별로 분석함으로써 음성합성의 성능향상을 위해 개선해야 할 문제점들을 제시한다. 실험에서는 ETRI의 표준형 한국어 공통 음성 DB을 사용하였고, 오차의 범위가 20ms를 벗어난 경우를 분절 오류로 간주하였다. 실험 결과 여성화자의 경우 파열음 + 모음, 파찰음 + 모음, 모음 + 유음 음소쌍에서는 각각 약 99%, 99.5%, 99%의 높은 정확률을 보인 반면, 폐쇄음 + 비음, 폐쇄음 + 유음, 비음 + 유음 음소쌍에서는 44.89%, 50%, 55% 의 낮은 정확률을 보였으며, 남성화자에 대한 실험결과에서도 유사한 경향을 보였다.
본 연구는 해양수산부의 '지능형 해상교통정보시스템' 서비스 중 '사고취약선박 모니터링 서비스'의 선박 충돌 경보를 개선하기 위한 것으로, 현재의 선박 충돌 경보는 대형 선박 위주의 데이터와 그 운항자에 기반한 설문조사 레이블을 가지고 지도 학습(SL)한 모델을 사용하고 있다. 이로 인해, 소형선박 데이터 및 운항자의 의견이 현재 충돌 지도학습 모델에 반영되지 않아, 소형선박 운항자가 느끼는 체감보다 먼 거리에서 경보가 제공되기 때문에 그 효과가 미비하다. 또한, 지도학습(SL) 방법은 레이블링 된 다수의 데이터가 필요하지만, 레이블링 과정에서 많은 자원과 시간이 필요하다. 본 논문은 이러한 한계를 극복하기 위해 준지도학습(SSL)의 알고리즘인 Label Propagation과 TabNet을 사용하여 레이블이 결정되지 않은 데이터를 활용하여 소형선박을 위한 충돌 경보의 분류 모델을 연구하였다. 충돌 경보의 분류 모델을 활용하여 소형선박 운항자를 대상으로 실해역 시험을 수행한 결과 운항자의 만족도가 증가하는 결과를 확인하였다.
Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
Korean Journal of Radiology
/
제24권6호
/
pp.541-552
/
2023
Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.