• Title/Summary/Keyword: Label Word Set

Search Result 6, Processing Time 0.019 seconds

Generating Label Word Set based on Maximal Marginal Relevance for Few-shot Name Entity Recognition (퓨샷 개체명 인식을 위한 Maximal Marginal Relevance 기반의 라벨 단어 집합 생성)

  • HyoRim Choi;Hyunsun Hwang;Changki Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.664-671
    • /
    • 2023
  • 최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.

  • PDF

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation (감정점수의 전파를 통한 한국어 감정사전 생성)

  • Park, Ho-Min;Kim, Chang-Hyun;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • Sentiment analysis is the automated process of understanding attitudes and opinions about a given topic from written or spoken text. One of the sentiment analysis approaches is a dictionary-based approach, in which a sentiment dictionary plays an much important role. In this paper, we propose a method to automatically generate Korean sentiment lexicon from the well-known English sentiment lexicon called VADER (Valence Aware Dictionary and sEntiment Reasoner). The proposed method consists of three steps. The first step is to build a Korean-English bilingual lexicon using a Korean-English parallel corpus. The bilingual lexicon is a set of pairs between VADER sentiment words and Korean morphemes as candidates of Korean sentiment words. The second step is to construct a bilingual words graph using the bilingual lexicon. The third step is to run the label propagation algorithm throughout the bilingual graph. Finally a new Korean sentiment lexicon is generated by repeatedly applying the propagation algorithm until the values of all vertices converge. Empirically, the dictionary-based sentiment classifier using the Korean sentiment lexicon outperforms machine learning-based approaches on the KMU sentiment corpus and the Naver sentiment corpus. In the future, we will apply the proposed approach to generate multilingual sentiment lexica.

Hot Topic Discovery across Social Networks Based on Improved LDA Model

  • Liu, Chang;Hu, RuiLin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3935-3949
    • /
    • 2021
  • With the rapid development of Internet and big data technology, various online social network platforms have been established, producing massive information every day. Hot topic discovery aims to dig out meaningful content that users commonly concern about from the massive information on the Internet. Most of the existing hot topic discovery methods focus on a single network data source, and can hardly grasp hot spots as a whole, nor meet the challenges of text sparsity and topic hotness evaluation in cross-network scenarios. This paper proposes a novel hot topic discovery method across social network based on an im-proved LDA model, which first integrates the text information from multiple social network platforms into a unified data set, then obtains the potential topic distribution in the text through the improved LDA model. Finally, it adopts a heat evaluation method based on the word frequency of topic label words to take the latent topic with the highest heat value as a hot topic. This paper obtains data from the online social networks and constructs a cross-network topic discovery data set. The experimental results demonstrate the superiority of the proposed method compared to baseline methods.

Analyzing the discriminative characteristic of cover letters using text mining focused on Air Force applicants (텍스트 마이닝을 이용한 공군 부사관 지원자 자기소개서의 차별적 특성 분석)

  • Kwon, Hyeok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.75-94
    • /
    • 2021
  • The low birth rate and shortened military service period are causing concerns about selecting excellent military officers. The Republic of Korea entered a low birth rate society in 1984 and an aged society in 2018 respectively, and is expected to be in a super-aged society in 2025. In addition, the troop-oriented military is changed as a state-of-the-art weapons-oriented military, and the reduction of the military service period was implemented in 2018 to ease the burden of military service for young people and play a role in the society early. Some observe that the application rate for military officers is falling due to a decrease of manpower resources and a preference for shortened mandatory military service over military officers. This requires further consideration of the policy of securing excellent military officers. Most of the related studies have used social scientists' methodologies, but this study applies the methodology of text mining suitable for large-scale documents analysis. This study extracts words of discriminative characteristics from the Republic of Korea Air Force Non-Commissioned Officer Applicant cover letters and analyzes the polarity of pass and fail. It consists of three steps in total. First, the application is divided into general and technical fields, and the words characterized in the cover letter are ordered according to the difference in the frequency ratio of each field. The greater the difference in the proportion of each application field, the field character is defined as 'more discriminative'. Based on this, we extract the top 50 words representing discriminative characteristics in general fields and the top 50 words representing discriminative characteristics in technology fields. Second, the number of appropriate topics in the overall cover letter is calculated through the LDA. It uses perplexity score and coherence score. Based on the appropriate number of topics, we then use LDA to generate topic and probability, and estimate which topic words of discriminative characteristic belong to. Subsequently, the keyword indicators of questions used to set the labeling candidate index, and the most appropriate index indicator is set as the label for the topic when considering the topic-specific word distribution. Third, using L-LDA, which sets the cover letter and label as pass and fail, we generate topics and probabilities for each field of pass and fail labels. Furthermore, we extract only words of discriminative characteristics that give labeled topics among generated topics and probabilities by pass and fail labels. Next, we extract the difference between the probability on the pass label and the probability on the fail label by word of the labeled discriminative characteristic. A positive figure can be seen as having the polarity of pass, and a negative figure can be seen as having the polarity of fail. This study is the first research to reflect the characteristics of cover letters of Republic of Korea Air Force non-commissioned officer applicants, not in the private sector. Moreover, these methodologies can apply text mining techniques for multiple documents, rather survey or interview methods, to reduce analysis time and increase reliability for the entire population. For this reason, the methodology proposed in the study is also applicable to other forms of multiple documents in the field of military personnel. This study shows that L-LDA is more suitable than LDA to extract discriminative characteristics of Republic of Korea Air Force Noncommissioned cover letters. Furthermore, this study proposes a methodology that uses a combination of LDA and L-LDA. Therefore, through the analysis of the results of the acquisition of non-commissioned Republic of Korea Air Force officers, we would like to provide information available for acquisition and promotional policies and propose a methodology available for research in the field of military manpower acquisition.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.