• 제목/요약/키워드: Label Clustering

검색결과 34건 처리시간 0.02초

지식기반 데이터베이스 검색 시스템의 구축 (Building of Database Retrieval System based on Knowledge)

  • 박계각;서기열;임정빈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.450-453
    • /
    • 1999
  • 본 논문에서는 사용자와 시스템의 DB, 이미지데이터 및 언어적인 지식표현을 통해 구축된 지식기반 데이터베이스(KDB)와의 인터페이스 역할을 위한 협조적인 검색시스템을 구축하였다. 기존의 데이터베이스 검색시스템은 사용자의 요구에 정확히 일치하는 데이터가 시스템 내에 존재할 경우에만 해당 데이터를 제공하지만 그렇지 않은 경우에는 아무런 데이터도 제공할 수 없다. 이러한 문제점을 해결하기 위해 사용자의 요구에 일치하는 데이터가 데이터베이스 내에 존재할 때 인터페이스를 통해 해당 데이터를 제공하고, 만일 사용자의 요구에 일치하는 데이터가 존재하지 않을 경우에는 퍼지 클러스터링과 언어 레이블의 할당을 통한 지식기반 데이터베이스를 구축하여 사용사의 요구에 가장 근접한 데이터 및 이미지정보를 제시하도록 하였다.

  • PDF

비음수 행렬 분해와 동적 분류 체계를 사용한 자동 이메일 다원 분류 (Automatic Email Multi-category Classification Using Dynamic Category Hierarchy and Non-negative Matrix Factorization)

  • 박선;안동언
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권5호
    • /
    • pp.378-385
    • /
    • 2010
  • 이메일 사용의 증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 늘고 있다. 현재의 이메일 분류는 SVM, 베이지안 분류자, 규칙 기반 분류자 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 그러나 이러한 지도 학습 방법들은 적합한 이메일을 인식하기 위하여서 사용자가 규칙이나 색인어 목록을 작성해야 한다. 비지도 학습 방법으로 군집을 이용한 다원 분류 방법은 메일의 분류 주제를 설정해주어야 한다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factorization)를 기반으로 한 자동 분류 주제 생성 방법과, 동적 분류 체계(DCH, Dynamic Category Hierarchy) 방법을 이용한 분류 주제 내에 이메일을 재구성하는 방법을 결합한 새로운 이메일 다원 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 다원 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 사용자가 분류 결과를 만족하지 못하면 분류 주제 내의 이메일을 동적으로 재구성하여 분류의 정확률을 높인다.

실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘 (Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection)

  • 황경애;오하영;임지영;채기준;나중찬
    • 정보처리학회논문지C
    • /
    • 제12C권5호
    • /
    • pp.649-658
    • /
    • 2005
  • 네트워크 기반의 공격은 그 위험성과 피해의 규모가 크기 때문에 공격 초기에 빨리 탐지하는 것이 중요하다. 그러나 지도학습 데이터 마이닝을 이용한 네트워크상의 비정상 트래픽을 탐지하는 방법은 방대한 양의 데이터 전처리와 관리자의 분석이 요구되며 관리자의 분석이 정확하다는 보장이 없을 뿐만 아니라 각 네트워크의 실시간 특성을 고려하지 못하기 때문에 탐지의 어려움이 크다. 본 논문에서는 실시간 침입 탐지와 점진적 학습을 위해 비지도학습의 데이터마이닝 기법중 하나인 자기 조직화 지도를 기반으로 트래픽 속성 상관관계 메커니즘을 제안한다. 이는 세 단계로 이루어진다. 첫 번째 단계는 초기 학습이 이루어지는 단계로 비지도 학습을 통하여 성격이 비슷한 트래픽끼리 클러스터링 한 맵을 생성시킨다. 두 번째 단계는 맵의 각 클러스터가 정상과 비정상 트래픽의 클러스터로 구분되기 위해 각 공격별로 추출된 규칙(rule)을 적용하여 맵을 분석한다. 이 규칙은 지도 학습을 통한 규칙 기반의 방법으로, 각 데이터 항목마다 SOM을 이용한 속성별 맵의 상관관계(correlation) 분석을 통해 생성되었다. 마지막으로 분석된 맵을 이용하여 실시간 탐지와 함께 점진적 학습이 이루어지게 된다. 여러 실험을 통하여 비지도 학습과 지도 학습을 결합한 SOM 기반 트래픽 속성 상관관계 메커니즘이 지도 학습에 비해 실시간 탐지에 우수함을 증명하였다.

인공신경망 기반 웹서비스 분류체계 생성 프레임워크의 실증적 평가 (Facilitating Web Service Taxonomy Generation : An Artificial Neural Network based Framework, A Prototype Systems, and Evaluation)

  • 황유섭
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.33-54
    • /
    • 2010
  • 월드와이드웹(WWW)은 유용한 정보를 포함하는 자료들의 집합에서 유용한 작업을 수행할 수 있는 서비스들의 집합으로 변화하고 있다. 새롭게 등장하고 있는 웹서비스 기술은 향후 웹의 기술적 변화를 추구하며 최근의 웹의 변화에 중요한 역할을 수행할 것으로 기대된다. 웹서비스는 어플리케이션 간의 통신을 위한 호환성 표준을 제시하며 기업 내/외를 아우를 수 있는 어플리케이션 상호작용 및 통합을 촉진한다. 웹서비스를 서비스 중심 컴퓨팅환경으로서 운용하기 위해서는 웹서비스 저장소가 완성도 높게 조직화되어 있어야 할 뿐 아니라, 사용자들의 필요에 맞는 웹서비스 컴포넌트를 찾을 수 있는 효율적인 도구들을 제공하여야 한다. 서비스 중심 컴퓨팅을 위한 웹서비스의 중요성이 증대됨에 따라 웹서비스의 분류체계를 효율적으로 제공할수 있는 기법의 수요 또한 증대된다. 다수의 웹서비스 저장소들은 웹서비스 분류체계를 제안하여 왔지만, 대부분의 분류체계는 활용하기에는 제대로 발달하지 못하였거나 관리하기에 너무 어려운 단점을 갖고 있다. 이 논문에서는 인공신경망 기반 군집화 기법과 XML 기반의 웹서비스 기술표준인 WSDL의 의미적가치를 활용하여 웹서비스 분류체계 생성 프레임워크를 제안한다. 이 논문에서 인공신경망을 활용하여 제안하는 웹서비스 분류체계 생성 프레임워크를 프로토타입 시스템로 개발하였으며, 실제 운용되고 있는 웹서비스 저장소로부터 획득한 실제 웹서비스들을 사용하여 제안하는 웹서비스 분류체계 생성 프레임워크를 실증적으로 평가하였다. 또한 제안하는 방식의 효용성을 보여주는 실험결과를 보고한다.