• 제목/요약/키워드: Lab-On-a-Chip

검색결과 198건 처리시간 0.03초

휴대용 활동 상태 모니터링 시스템의 설계 (Design of a Portable Activity Monitoring System)

  • 이승형;박호동;윤형로;이경중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.32-38
    • /
    • 2002
  • This paper describes a development of a portable physical activity monitoring system using two accelerometers to quantify physical activity. The system hardware consists of two piezoresistive accelerometers, amplifiers with gain of 30, lowpass filters with cut-off frequency of 15Hz, offset control circuits, one-chip microcontroller and flash memory card. In order to evaluate the performance of the system we acquired 3 channel data at 32 sample/sec from body-fixed accelerometers in chest and right upper leg. And then the acquired data were processed by MatLab on personal computer. We tried to distinguish not only fundamental actions which are steady-state activities such as standing, sitting, and lying but also dynamic activities with walking, up a stairway, down a stairway, and running. Five subjects participated the evaluation process which compare the video data with the measured data. As a result, the activity classification rate of 90.6% on average was obtained. Overall results showed that the steady-state activities could be classified from the low component of 3-axis acceleration signal and dynamic activities could be distinguished from frequency analysis using wavelet transform and FFT. Finally, we could find that this system can be applied to acquire and analyze the static and dynamic physical activity data.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

0.18 μm CMOS 기반 인덕터를 사용하지 않는 6~18 GHz 7-Bit 28 dB 가변 신호 감쇠기 (Inductor-less 6~18 GHz 7-Bit 28 dB Variable Attenuator Using 0.18 μm CMOS Technology)

  • 나윤식;이상훈;김재덕;이왕용;이창훈;이성호;서문교;이성철
    • 한국전자파학회논문지
    • /
    • 제27권1호
    • /
    • pp.60-68
    • /
    • 2016
  • 본 논문에서는 6~18 GHz 대역 7-bit 28 dB 가변 신호 감쇠기의 설계 및 측정결과에 대하여 기술하였다. 기존의 switched-T 감쇠기에 칩 사이즈를 최소화하기 위해 인덕터를 사용하지 않았고, 보상용 병렬 커패시터를 추가하여 참조 상태 (reference state)와 감쇠 상태간의 위상 변화를 최소화하였다. 설계된 감쇠기는 $0.18{\mu}m$ CMOS 공정을 이용하여 제작하였다. 측정된 감쇠기의 해상도와 전체 감쇠 범위는 각각 0.22 dB 및 28 dB이다. 6~18 GHz의 동작 주파수에서 RMS 감쇠 오차는 0.26 dB 이하, 위상 오차는 $3.2^{\circ}$ 이하로 측정되었으며, 참조상태 손실은 12.4 dB 이하이다. 전체 주파수 범위와 감쇠상태에서 입출력 반사손실은 9.4 dB 이상이다. 패드를 포함하지 않은 칩 면적은 $0.11mm^2$이다.

미세유체 기반의 플랫폼을 이용한 미지의 백색가루 간이식별 탐지방안 (Simple Identification Methods for Unknown Suspicious White Powders using Microfluidic-based Platform)

  • 박재우;송지영;나상철;변기식;전누리
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.853-859
    • /
    • 2017
  • Terrorists always threats the global security with the possibility of using prohibited warfare, NBCs(Nuclear, Biological and Chemical Warfare). Compared to other prohibited warfares, most of biological warfare agents (BWAs) have no physical properties and time delays from spread to affect. Therefore the early detection is important to protect and decontaminate from BWAs. On the preliminary detection stage for suspicious material, most of detection kits only serve to know weather the BWAs exists or not. Due to this reason, simple field confirmation testing for suspicious substances have been used to identify materials which show negative result on detection kits. Considering the current Lab on a Chip(LOC) technologies, we suggest simple identification platform for unknown suspicious substances based on paper fluidics. We hope that our research will envision the future direction for the specific point-of-view for LOC technologies on detection strategy of BWAs.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

직선채널과 확대채널에서의 액적 내부 유동 가시화 (Flow Visualization of the Flow inside the Droplet Passing through a Straight and a Diverging Channel)

  • 진병주;김영원;유정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.71-76
    • /
    • 2007
  • Flow visualization of a droplet passing through a straight channel and a diverging channel has been carried out using micro-PIV. Diverging channel is frequently used in lab-on-a-chip and microfluidic devices, where flow pattern inside the droplet passing is quite different from that through a straight channel. In the present study, we visualized the droplet flow in three different regions. The first region is where the droplet has a wide contact area with the channel wall, the second region is characterized with a narrow contact area and the third region is where droplet is detached from the channel wall. Visualization results show that the internal flow inside the droplet passing through the straight channel moves in the opposite direction to the droplet velocity in the near wall exhibiting complex flow patterns. But in the diverging channel the internal flow inside the droplet moves in the same direction as the droplet velocity due to the shear induced by oil phase flow exhibiting rather simple flow pattern.

  • PDF

교차 전기영동법을 이용한 극소형 DNA 추출기 (A DNA Microextractor Using Crossed Field Electrophoresis)

  • 이소연;서경선;조영호
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1135-1139
    • /
    • 2004
  • This paper presents a microextractor for the separation of DNA molecules by their sizes. The DNA microextractor immobilizes the DNA molecules of specific size in the micropillar array by adjusting the period of the crossed electric field, thus providing a starting-point independent target DNA extraction method without separation process monitoring. The DNA microextractor has been fabricated by a three-mask micromachining process. The velocity of three different DNA molecules has been measured at the electric field of E=5V/0.8cm in the fabricated DNA microextractor, resulting in the reorientation times of $4.80{\pm}0.44sec,\;7.12{\pm}0.75sec$, and $9.88{\pm}0.30sec$ for ${\lambda}$ DNA, micrococcus DNA, and T4 DNA, respectively. T4 DNA is trapped in the micropillar array when the crossed electric field of 5V/0.8cm is applied alternately at a 10 second time interval. The present DNA microextractor filters the DNA in a specific size range by adjusting the magnitude and/or the period of the crossed electric field applied in the micropillar array.

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

미세구조 내에서의 사출성형 흐름에 관한 연구 (Study on flow behavior of polymer solutions in microchannels)

  • 김동학
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.471-475
    • /
    • 2006
  • 랩온어칩(Lab-on-a-chip) 등 미세구조를 갖는 다양한 장치들의 대량 생산이 가능한 사출성형공정 내에서의 미세 흐름 거동의 이해는 매우 중요하다. 본 논문에서는 마이크로 채널 구조 내에서의 사출성형 흐름에 관하여 연구하였다. 흐름 현상을 관찰하기 위하여 투명한 PMMA를 사용하여 가시화 금형(visual mold)을 제작하였다. 실험 대상 물질로는 고분자 용액인 PEO (poly (ethylene oxide)) 와 PA (polyacrylamide) 용액을 선정하였는데, 이는 고분자 용융체의 특징인 높은 점성과 탄성을 갖도록 설계한 것이다. 시간에 따른 흐름현상과 주 채널과 마이크로 채널과의 경쟁적인 흐름 현상을 관찰하였다. 이로부터 마이크로 사출성형 흐름에서 나타나는 마이크로 채널 내의 충전길이에 대한 해석이 가능하였다.

  • PDF

타닌산-아연 복합체를 이용한 단일수준에서의 동물세포 코팅 (Cytocompatible Coating of Individual Mammalian Cells with Tannic Acid-Zn Complex)

  • 이준오
    • KSBB Journal
    • /
    • 제32권2호
    • /
    • pp.160-167
    • /
    • 2017
  • Coating of individual cells with organic or inorganic materials has drawn a great deal of attention, because it provides the cells with physicochemical durability, which would contribute to the development of bioreactors, biosensor, and lab-on-a-chip, as well as to the fundamental studies in single cell-based biology. Although many strategies have been developed for coating of microbial cells, limited methods are available to coat mammalian cells because most mammalian cells do not have a robust membrane or exoskeleton. Instead, they are enclosed in a lipid bilayer, which is fluidic and vulnerable to changes in its environments. It is more difficult to treat mammalian cells in vitro than microbial cells because the surfaces of mammalian cells are not protected or reinforced by a tough coat. In this work, we report a cytocompatible and degradable nanocoat for mammalian cells. Three types of mammalian cells (HeLa cells, NIH 3T3 fibroblasts, and Jurkat T cells) were individually coated within metal-polyphenol. To maintain the viability of the mammalian cells, we performed the whole processes under strictly physiological culture conditions, and carefully selected nontoxic materials.