• Title/Summary/Keyword: Lab Scale 실험

Search Result 302, Processing Time 0.022 seconds

A study on enhancement of nitrogen removal efficiency on low concentration influent sewage (단계유입과 내부순환을 이용한 저농도 하수의 질소처리효율 향상을 위한 연구)

  • Choo, Tai-Ho;Kim, Tae-Ki;Ok, Chi-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.675-680
    • /
    • 2010
  • This study was investigated to complement nitrogen removal of low concentration influent municipal sewage. The following are the results of the effect of Internal Recircularion and Step Feed rates on Treatment efficiency at a BOD low concentration influent municipal sewage. Up to 90.0% of BOD, 87.8% of COD, 71.0% of T-N, 75.3% of T-P were removed on average at a low concentration influent. Whereas BOD and T-P were removed without any relations to Step Feed rates, T-N was influenced. Nitrogen removal efficiencies in 80% of Step Feed rates was 65%, which was caused by the lack of Carbon Source for denitrification. Nitrogen removal efficiency in 40% of Step Feed rates was 58%, which means it was not removed but dischared. Consequently, the efficiency was 73%, 80%, and 78% in 70%, 60% and 50% of Step Feed rates, which was concluded as the best range of Step Feed rates. Nitrogen removal efficiency increased under the condition of Internal Recircularion. At over 150% of Internal Recircularion rate, the efficiencies were not affected any more. It is believed that lots of Recircularion caused inflow of DO to anoxic tank. Therefore, the most appropriate Internal Recircularion rate can be concluded as 50~150%.

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process (혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리)

  • Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.613-619
    • /
    • 2018
  • In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Industrial Wastewater containing Ammonium Nitrogen (암모니아성 질소함유 산업폐수처리를 위한 미생물의 분리 및 복합미생물제제의 개발)

  • Lee, Myoung-Eun;Mun, Seo-Jin;Kwon, Do-Hyuck;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • For effective treatment of wastewater containing ammonium nitrogen (NH4-N), AT2, AT9, and AT12 strains, having high total organic carbon (TOC) removal capability, and FN47, possessing excellent ammonia nitrogen removal capability present in the activated sludge in the aeration tank of food wastewater treatment plants, were isolated and identified. The cells of these isolated strains were used for microbial augmentation with FIW-1 in the defatted rice bran as a medium to treat industrial wastewater. The investigation of the cultural characteristics of these isolated strains in the aeration tank showed that the affinities for substrate of the isolated strains were extremely high, of which AT12 (Alcaligenes sp. AT12) was the highest among the isolated strains. Ammonium nitrogen removal efficiency in the food wastewater was 71% in the isolated strain FN47 (Microbacterium sp. FN47) treatment group. When only activated sludge was added in the lab scale pilot using food wastewater during continuous culture experiment, the TOC removal efficiency was 63%. Meanwhile, the removal efficiency of 92% was obtained when the microbial augmentation FIW-1 for wastewater treatment was applied. In addition, the chemical oxygen demand (COD) level from the effluent wherein microbial augmentation FIW-1 was input for the initial three days in the wastewater treatment site experiment showed a treatment rate of about 43%, which was increased to 62% after an elapse of 5 days.

Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke (활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향)

  • Kim, Hark-Joon;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment (연안오염퇴적물에 주입한 생물활성촉진제의 깊이가 생물정화효율에 미치는 영향)

  • Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2015
  • This study investigated the optimum depth for the application of bioremediation in contaminated coastal sediment using a lab scale column experiment. The biostimulants were placed in the top surface of the sediment facing seawater, 3cm, 6cm and 10cm of the depth from the surface, respectibely. During the experiment, the changes of organic pollutants and heavy metal fractions in the sediment were monitored in 1 month and 3month time intervals. The organic pollutants found during various analysis such as chemical oxygen demand, total solids and volatile solids, significantly reduced when the depth of the biostimulant was 3cm or less. In contrast, at a depth of over 6cm, the reduction of organic pollutants decreased, and the results were similar to the control. Heavy metals fractions in the sediment also changed with the depth of the biostimulants. The exchangeable fraction of the metals was quite reduced at the sediment surface in the column, but the organic bound and residual fractions considerably increased at a depth of 3cm. Based on this study, the optimum biostimulants depth for in-situ bioremediation of contaminant coastal sediment is 3cm from the sediment surface.

Effect of Ni or Cu content on Microstructure and Mechanical Properties of Solution Strengthened Ferritic Ductile Cast Iron (고용강화 페라이트계 구상흑연주철의 미세조직 및 기계적 성질에 미치는 Ni 및 Cu의 영향)

  • Bang, Hyeon-Sik;Kim, Sun-Joong;Song, Soo-Young;Kim, Min-Su
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • In order to experimentally investigate the effect of Ni or Cu addition on microstructure and mechanical properties of high Si Solution Strengthened Ferritic Ductile cast Iron (SSF DI), a series of lab-scale sand casting experiment were conducted by changing initial concentration of Ni up to 3.0wt% or Cu up to 0.9wt% in the alloy. It was found that increase in Ni or Cu content in the alloy leads to increase in strength properties and hardness as well as decrease in ductility. The higher Ni or Cu content the SSF DI has, the higher fraction of pearlite was observed. At similar levels of Ni or Cu contents in the alloy, higher pearlite area fraction was observed in the Cu-containing SSF DI than that in the Ni-containing SSF DI. When the effect of the microstructure on the mechanical properties of Ni-containing SSF DI was considered, Ni-containing SSF DI was found to have excellent strength and hardness as well as good elongation when the pearlite fraction was controlled less than 10%. As the pearlite fraction in the Ni-containing SSF DI exceeds 10%, however, it shows drastic decrease in elongation. Meanwhile, gradual increase in strength and hardness, and decrease in elongation with respect to increase in pearlite fraction were observed in Cu-containing SSF DI. The different microstructure-mechanical property relationships between Ni-containing and Cu-containing SSF DI were due to the combined effect of the relatively weak pearlite stabilizing effect of Ni compared to that of Cu in high Si SSF DI, and matrix strengthening effect caused by the different amounts of those alloying elements required for similar pearlite fraction.

Selective Nitrate Removal Performance Analysis of Ion Exchange Resin in Shipboard Waste Washwater by Air Pollution Prevention Facility (선박용 대기오염장치 폐세정수 내 질산염의 선택적 제거를 위한 이온교환수지 공정 성능 평가)

  • Kim, Bong-Chul;Yeo, In-Seol;Park, Chan-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2021
  • From 1 January 2020, the limit for Sulphur in fuel oil used on board ships operating outside designated emission control areas will be reduced to 0.5 %. This regulation by international maritime organization (IMO) is able to significantly reduce the amount of Sulphur oxides (SOx) discharging from ships and should have environmental advantages and health for all over the world. To meet the regulation, in these days, wet scrubber system is being actively developed. However, this process leads to make washing wastewater. In this study, we evaluated ion exchange resin system in accordance with scrubber wastewater discharge regulation by IMO. Theoretical wastewater used as feed solution of lab scale water treatment systems. The results revealed that nitrate ion was removed selectively in spite of high TDS wash wastewater solution depending on ion exchange resin property. Moreover, it was possible to improve efficiency of the system by optimizing operating conditions.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea (우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가)

  • Chang, See-Un;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.8-19
    • /
    • 2008
  • The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.

Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth (수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발)

  • Paek, Seung-Woo;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC srtucture for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by the chemical analysis.