• Title/Summary/Keyword: LX GNSS permanent stations

Search Result 3, Processing Time 0.018 seconds

Avaliable analysis of precise positioning using the LX-PPS GNSS permanent stations (LX-PPS GNSS 상시관측소의 정밀측위 활용 가능성 분석)

  • Ha, Jihyun;Park, Kwan-Dong;Kim, Hye-In
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.23-38
    • /
    • 2021
  • In this paper, we analyzed the possibility of utilizing LX-PPS GNSS permanent stations whose antennas are installed on the building rooftop for the purpose of high-precision GNSS positioning services. We picked 15 pairs of adjacent GNSS permanent stations operated by LX-PPS and NGII, and then produced 3-year-long time series using the high-precision data processing software called GIPSY. Patterns and trends of position estimates were compared and analyzed. Horizontal and vertical deviations including the linear velocities coincide with the well-known crustal deformation rates of the Korean peninsula. We also observed almost the same annual or seasonal patterns from those nearby sites. After detrending the linear velocity, the amplitude and phase of annual signals almost perfectly match each other within the baseline length of 2 km. By subtracting seasonal signals, the RMS and standard deviations in LX-PPS PPGR with respect to NGII KANR are about 1, 2, and 5 mm in the north-south, east-west, and vertical directions, respectively. From this analysis it can be concluded that the rooftop-installed LX-PPS sites show similar level of stability and positioning performance comparable to those ground-mounted NGII stations.

Analysis of Positioning Accuracy Using LX GNSS Network RTK (LX 위성측위 인프라기반 네트워크 RTK를 이용한 측위성능 분석)

  • Ha, Jihyun;Kim, Hyun-ho;Jung, Wan-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Spatial information research institute of the LX Korea land and geospatial informatix corporation manages infrastructure for the LX global navigation satellite system (GNSS), which comprises 30 monitoring stations nationwide. Since 2014, it has conducted network real-time kinematic (RTK) tests using the master-auxiliary concept (MAC). This study introduces the infrastructure of LX GNSS and presents the results of a performance analysis of the LX RTK service. The analysis was based on a total of 25 cadastral topographic control points in Jeonju, Seoul, and Incheon. For each point, performance was measured over one observation, two repeated observations, and five repeated observations. The measurements obtained from LX MAC and the VRS of the National Geographic Information Institute were compared with the announced coordinates derived from cadastral topographic control points. As a result, the two systems were found to have similar performance with average error and standard deviation differing only by 1 to 2 cm.

Establishment of LX GNSS Network and Accuracy Analysis of Network Real Time Kinematic (LX 대한지적공사 위성측위 인프라 구축 및 네트워크 실시간 이동측위 성능 분석)

  • Ha, Ji-Hyun;Kim, Hyun-Ho;Kim, Jae-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2014
  • For improvement of network RTK performance in survey field, Spatial Information Research Institute (SIRI), LX Korea Cadastral Survey Corporation installed 30 GNSS permanent stations in Korea Peninsula, and has been running the MAC-based network RTK service as a test version. In this paper, we introduce the LX GNSS network and analyze the positioning accuracy of the LX MAC RTK service. For field test of the LX MAC RTK service, we installed temporally fixed anchor points and observed simultaneously with VRS of National Geographic Information Institute. As a result, the horizontal position differences and initial times of LX MAC with respect to NGII VRS are $1{\sim}2{\pm}1cm$ and <10 seconds, respectively.