• Title/Summary/Keyword: LWR

Search Result 188, Processing Time 0.029 seconds

First Biometric Relationship and Seasonal Condition Factors of Sebastes zonatus Chen and Barsukov, 1976 and Thamnaconus modestus (Günther, 1877) Inhabiting the Waters of Ulleung-do and Dokdo (울릉도와 독도에 출현하는 띠볼락(Sebastes zonatus Chen and Barsukov, 1976)과 말쥐치(Thamnaconus modestus(Günther, 1877))의 생물역학적 관계와 계절적 비만도지수의 첫 보고)

  • Joo Myun Park;Hyun Su Rho;Hee Gap Lee;Se Hun Myoung;Laith A. Jawad;Jae Ho Lee;Chang Geun Choi
    • Korean Journal of Ichthyology
    • /
    • v.35 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • This study is the first to report the biometric information between the length and weight relationships (LWR) and seasonal body condition factors (K) of Sebastes zonatus Chen & Barsukov, 1976 and Thamnaconus modestus (Günther, 1877) inhabiting the waters off Ulleung-do and Dokdo. The LWRs in spring and summer, and all seasons combined were highly correlated (r2>0.959), and the regression slopes of LWRs were significantly different between the spring and summer in both species. The body conditions of the two fish were significantly higher during the spring than during the summer, reflecting their fatness in relation to spawning. The results from this study contribute to the understanding of the biology of S. zonatus and T. modestus and provide useful data for the development of conservation and management plans for these species.

DISCUSSION ABOUT HBS TRANSFORMATION IN HIGH BURN-UP FUELS

  • Baron, Daniel;Kinoshita, Motoyasu;Thevenin, Philippe;Largenton, Rodrigue
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-214
    • /
    • 2009
  • High burn-up transformation process in low temperature nuclear fuel oxides material was observed in the early sixties in LWR $UO_2$ fuels, but not studied in depth. Increasing progressively the fuel discharge burn-up in PWR power plants, this material transformation was again observed in 1985 and identified as an important process to be accounted for in the fuel simulations due to its expected consequence on fuel heat transfer and therefore on the fission gas release. Fission gas release was one of the major concerns in PWR fuels, mainly during transient or accidents events. The behaviour of such a material in case of rod failure was also an important aspect to analyse. Therefore several national and international programs were launched during the last 25 years to understand the mechanisms leading to the high burn-up structure formation and to evaluate the physical properties of the final material. A large observations database has been acquired, using the more sophisticated techniques available in hot cells. This large database is discussed in this paper, providing basis to build an engineering-model, which is based on phenomenological description data and information accumulated. In addition this paper has the ambition to construct the best logical model to understand restructuring.

NUCLEAR DATA UNCERTAINTY AND SENSITIVITY ANALYSIS WITH XSUSA FOR FUEL ASSEMBLY DEPLETION CALCULATIONS

  • Zwermann, W.;Aures, A.;Gallner, L.;Hannstein, V.;Krzykacz-Hausmann, B.;Velkov, K.;Martinez, J.S.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.343-352
    • /
    • 2014
  • Uncertainty and sensitivity analyses with respect to nuclear data are performed with depletion calculations for BWR and PWR fuel assemblies specified in the framework of the UAM-LWR Benchmark Phase II. For this, the GRS sampling based tool XSUSA is employed together with the TRITON depletion sequences from the SCALE 6.1 code system. Uncertainties for multiplication factors and nuclide inventories are determined, as well as the main contributors to these result uncertainties by calculating importance indicators. The corresponding neutron transport calculations are performed with the deterministic discrete-ordinates code NEWT. In addition, the Monte Carlo code KENO in multi-group mode is used to demonstrate a method with which the number of neutron histories per calculation run can be substantially reduced as compared to that in a calculation for the nominal case without uncertainties, while uncertainties and sensitivities are obtained with almost the same accuracy.

Analyses and improvement of fuel temperature coefficient of rock-like oxide fuel in LWRs from neutronic aspect

  • Shelley, Afroza
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1156-1163
    • /
    • 2020
  • Fuel temperature coefficient (FTC) of PuO2+ZrO2 (ROX) fueled LWR cell is analyzed neutronically with reactor- and weapons-grade plutonium fuels in comparison with a U-free PuO2+ThO2 (TOX), and a conventional MOX fuel cells. The FTC value of a ROX fueled LWR is smaller compared to a TOX or a MOX fueled LWRs and becomes extremely positive especially, at EOL. This is because when fuel temperature is increased, thermal neutron spectrum is shifted to harder, which is extreme at EOL in ROX fuel than that in TOX and MOX fuels. Consequently at EOL, 239Pu and 241Pu contributes to positive fuel temperature reactivity (FTR) in ROX fuel, while they have negative contribution in TOX and MOX fuels. The FTC problem of ROX fuel is mitigated by additive ThO2, UO2 or Er2O3. In ROX-additive fuel, the atomic density of fissile Pu becomes more than additive free ROX fuel especially at EOL, which is the main cause to improve the FTC problem. The density of fissile Pu is more effective to decrease the thermal spectrum shifts with increase the fuel temperature than additive ThO2, UO2 or Er2O3 in ROX fuel.

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Review of Calculational Model for the Performance of CANDU-Type Nuclear Development and Parametric Study on the Fuel Performance (CANDU형 핵연료거동에 관한 계산모형의 검토 및 거동특성에 관한 변수적 연구)

  • Man Sung Yim;Un Chul Lee;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.57-69
    • /
    • 1983
  • The LWR fuel performance analysis computer code, FRAPCON-1, are evaluated to investigate the performance of CANDU fuel elements loaded in Wolsung-1 reactor. The FRAPCON-1 models of neutron flux depression in fuel and of fuel-to-cladding heat transfer are modified, and the validity of fission gas release model for CANDU fuel is evaluated. And the heavy water properties are provided in calculating the heat transfer coefficient between cladding and coolant. By using the modified code, FRAPCON-1-CSK, the sensitivity studies are carried out for Wolsung-1 fuel element design parameters. The performance analysis is also performed for Wolsung-l fuel elements. The calculated results are discussed in terms of. LWR fuel design criteria because of unavailability of CANDU fuel design criteria.

  • PDF

A response matrix method for the refined Analytic Function Expansion Nodal (AFEN) method in the two-dimensional hexagonal geometry and its numerical performance

  • Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2422-2430
    • /
    • 2020
  • In order to improve calculational efficiency of the CAPP code in the analysis of the hexagonal reactor core, we have tried to implement a refined AFEN method with transverse gradient basis functions and interface flux moments in the hexagonal geometry. The numerical scheme for the refined AFEN method adopted here is the response matrix method that uses the interface partial currents as nodal unknowns instead of the interface fluxes used in the original AFEN method. Since the response matrix method is single-node based, it has good properties such as good calculational efficiency and parallel computing affinity. Because a refined AFEN method equivalent nonlinear FDM response matrix method tried first could not provide a numerically stable solution, a direct formulation of the refined AFEN response matrix were developed. To show the numerical performance of this response matrix method against the original AFEN method, the numerical error analyses were performed for several benchmark problems including the VVER-440 LWR benchmark problem and the MHTGR-350 HTGR benchmark problem. The results showed a more than three times speedup in computing time for the LWR and HTGR benchmark problems due to good convergence and excellent calculational efficiency of the refined AFEN response matrix method.