• Title/Summary/Keyword: LU 분해 프로그램

Search Result 4, Processing Time 0.016 seconds

Implementation of parallel blocked LU decomposition program for utilizing cache memory on GP-GPUs (GP-GPU의 캐시메모리를 활용하기 위한 병렬 블록 LU 분해 프로그램의 구현)

  • Kim, Youngtae;Kim, Doo-Han;Yu, Myoung-Han
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • GP-GPUs are general purposed GPUs for numerical computation based on multiple threads which are originally for graphic processing. GP-GPUs provide cache memory in a form of shared memory which user programs can access directly, unlikely typical cache memory. In this research, we implemented the parallel block LU decomposition program to utilize cache memory in GP-GPUs. The parallel blocked LU decomposition program designed with Nvidia CUDA C run 7~8 times faster than nun-blocked LU decomposition program in the same GP-GPU computation environment.

Implementation of high performance parallel LU factorization program for multi-threads on GPGPUs (GPGPU의 멀티 쓰레드를 활용한 고성능 병렬 LU 분해 프로그램의 구현)

  • Shin, Bong-Hi;Kim, Young-Tae
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • GPUs were originally designed for graphic processing, and GPGPUs are general-purpose GPUs for numerical computation with high performance and low electric power. In this paper, we implemented the parallel LU factorization program for GPGPUs. In CUDA, which is computational environment for Nvidia GPGPUs, domains are divided into blocks, and multi-threads compute each sub-blocks Simultaneously. In LU factorization program, computation order should be artificially decided due to the data dependence. To resolve the data dependancy, we suggested a parallel LU program for GPGPUs, and also explained parallel reduction algorithm for partial pivoting of LU factorization. We finally present performance analysis to show efficiency of the parallel LU factorization program based on multi-threads on GPGPUs.

Development of a Small Animal Positron Emission Tomography Using Dual-layer Phoswich Detector and Position Sensitive Photomultiplier Tube: Preliminary Results (두층 섬광결정과 위치민감형광전자증배관을 이용한 소동물 양전자방출단층촬영기 개발: 기초실험 결과)

  • Jeong, Myung-Hwan;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jung, Jin-Ho;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • Purpose: The purpose of this study was to develop a small animal PET using dual layer phoswich detector to minimize parallax error that degrades spatial resolution at the outer part of field-of-view (FOV). Materials and Methods: A simulation tool GATE (Geant4 Application for Tomographic Emission) was used to derive optimal parameters of small PET, and PET was developed employing the parameters. Lutetium Oxyorthosilicate (LSO) and Lutetium-Yttrium Aluminate-Perovskite(LuYAP) was used to construct dual layer phoswitch crystal. $8{\times}8$ arrays of LSO and LuYAP pixels, $2mm{\times}2mm{\times}8mm$ in size, were coupled to a 64-channel position sensitive photomultiplier tube. The system consisted of 16 detector modules arranged to one ring configuration (ring inner diameter 10 cm, FOV of 8 cm). The data from phoswich detector modules were fed into an ADC board in the data acquisition and preprocessing PC via sockets, decoder block, FPGA board, and bus board. These were linked to the master PC that stored the events data on hard disk. Results: In a preliminary test of the system, reconstructed images were obtained by using a pair of detectors and sensitivity and spatial resolution were measured. Spatial resolution was 2.3 mm FWHM and sensitivity was 10.9 $cps/{\mu}Ci$ at the center of FOV. Conclusion: The radioactivity distribution patterns were accurately represented in sinograms and images obtained by PET with a pair of detectors. These preliminary results indicate that it is promising to develop a high performance small animal PET.

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2021
  • In this paper, we suggest the Deep Neural Network Model System for predicting results of the match of 'League of Legends (LOL).' The model utilized approximately 26,000 matches of the LOL game and Keras of Tensorflow. It performed an accuracy of 93.75% without overfitting disadvantage in predicting the '2020 League of Legends Worlds Championship' utilizing the real data in the middle of the game. It employed functions of Sigmoid, Relu and Logcosh, for better performance. The experiments found that the four variables largely affected the accuracy of predicting the match --- 'Dragon Gap', 'Level Gap', 'Blue Rift Heralds', and 'Tower Kills Gap,' and ordinary users can also use the model to help develop game strategies by focusing on four elements. Furthermore, the model can be applied to predicting the match of E-sports professional leagues around the world and to the useful training indicators for professional teams, contributing to vitalization of E-sports.