• Title/Summary/Keyword: LTLT milk

Search Result 30, Processing Time 0.023 seconds

Effect of Sterilizing Method on the Quality Change of Iron Fortified Market Milk during Storage (살균방법이 철분강화 우유의 저장중 품질변화에 미치는 영향)

  • 김윤지;김기성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.755-759
    • /
    • 1999
  • To evaluate the effect of sterilizing method on the quality of iron fortified market milk, HTST(high temperature, short time) or LTLT(low temperture, long time) method was adopted after addition of 100ppm ferrous sulfate, ferric citrate, ferric ammonium citrate, or ferrous lactate in market milk. Sterilized iron fortified market milk was stored at 4oC and then pH, lipid oxidation, color change, and sensory quality were observed. The range of pH change in iron fortified market milk sterilized by HTST or LTLT was 6.51~6.74. The order of pH was control>ferric ammonium citrate>ferrous lactate>ferrous sulfate>ferric citrate. Oxygen consumption of ferric ammonium citrate and ferric citrate was lower than ferrous lactate and ferrous sulfate. This trend was same in HTST and LTLT method, but generally oxygen consumption was lower in iron fortified market milk sterilized by LTLT method than by HTST. In total color change, ferrous lactate treatment was closer to control than other treatments. Also sensory characteristics of ferrous lactate treatment was showed better quality than other treatment. From these results, LTLT method was more suitable than HTST method for iron fortified market milk and ferrous lactate was comparably suitable among iron salts used in this study.

  • PDF

A Study on the Sensory Characteristics of Various Heat Treated Milks (살균 온도에 따른 시판 우유의 관능적 특성 비교 연구)

  • 박신인
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 1995
  • Sensory characteristics of various milk samples-low-temperature long-time(LTLT) milk, high-temperature short-time (HTST) milk and ultra-high temperature (UHT) milk-were investigated using chemical analysis and sensory evaluation. The chemical composition was not much different among the milk samples. The results of evaluation of preference for color, flavor, taste and overall desirability of the milk samples by scoring and ranking tests indicated that significant difference on the sensory quality was recognized at 0.01 percent level. UHT milk samples (especially sample F and H) had better sensory acceptability than LTLT milk HTST milk samples.

  • PDF

Quality Changes in Various Heat-treated Market Milks during Storage (열처리를 달리한 시유의 저장중 품질 변화)

  • Kwon, Soon-Ha;Ahn, Joung-Jwa;Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 1998
  • This study was carried out to investigate changes of microbiological and sensory properties in various heat-treated market milks (LTLT, HTST, and UHT milks) stored at 10$^{\circ}C$ during 15d. Titratable acidity (TA) increased with storage, while pH tended to decrease. During the initial 9d, no difference was found in TA, however, after 9d, it was slightly higher in HTST and UHT milks than that in LTLT milk. In LTLT and HTST milks, total viable cells and psychrotrophs were dramatically increased during storage, In addition coliform and pathogenic bacteria were found at 12 and 15d. In UHT milk, total viable cells were found only at 15d. In sensory evaluation, LTLT and HTST milks developed a negligible off-flavor until 9d. At 12d, it became stronger in HTST milk than that in LTLT milk. In UHT milk, off-flavor was detected at 9d and increased rapidly there-after. The degree of off-flavor was little higher in HTST and UHT milks, compared with that of LTLT milk after 9d storage. These observations indicated that LTLT and HTST milks may not be microbiologically acceptable after 5d, while off-flavor was not detectable until 9d, In comparison, UHT milk keeps a good quality in microorganism until 15d, however, it may not be accepted in sensory aspect after 9d storage.

  • PDF

Pattern Recognition Analysis for Volatile Compounds of the Whole, Skim, UHT-, HTST-, and LTLT-Milk under LED Irradiations (여러 가지 LED를 처리한 전지유, 무지방 우유, LTLT, UHT, HTST 처리 우유의 휘발성분 패턴 분석)

  • Kim, Ki-Hwa;Hong, Eun-Jeung;Park, Sue-Jee;Kang, Jee-Won;Noh, Bong-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.596-602
    • /
    • 2011
  • The objective of this study was to analyze the pattern recognition of volatile compounds from different types of milk under LED (Light Emitting Dioxide) irradiation for 6 d. Yellow, red, blue, dark, and fluorescent light were produced using LED equipment. A mass spectrometry-based electronic nose and DFA (discriminant function analysis) were used to determine the change in volatiles from different types of milk under LED irradiation. As the LED exposure time was increased, DF1 of whole milk changed considerably under blue light, while that of skim milk changed significantly under red and yellow light irradiation. Among the types of milk tested, the most light-induced oxidation sample was LTLT milk under blue light. The volatile compounds that were shown to increase due to LED treatment in the electronic nose analysis, which was based on MS, were mainly acetaldehyde, propanal, pentanal, hexanal, heptanal, nonanal, 3-methyl butanal, 2-methyl propanal, 2-butanone, 2-pentanone, 2-hexanone, and 2-heptanaone and 2-nonanone.

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

Effects of Milks by various Heat Treatment on Growth and Protein and Calcium Metabolism of Rats (우유의 열처리 정도가 흰쥐가 성장, 단백질 및 칼슘 대사에 미치는 영향)

  • 이정아
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 1995
  • This study investigates the supplementing effects of milks by various heat treatment on growth performance and protein and calcium metabolism of rats. For 4 weeks, raw, LTLT-HTST-and UHT-processed milks were given to rats which fed on a calcium free, semi-synthetic diet containing 5%casein. There were no significant differences among the experimental groups in weight gain, feed efficiency ratio and the serum level of total protein and calcium. Also, no significant differences were showed in protein efficiency, nitrogen balance, apparent protein digestibiltiy and the contents of weight and calcium of the left femur as well as 2 incisors. However, the biological value of protein in the UHT-milk group was significantly higher than that of the raw-milk group. The apparent calcium digestibility and calcium balance in the UHT-milk group were higher than those in the raw-, LTLT- and HTST-milk groups. The weight of left femur in all the groups supplemented with various heat-treated milks was significantly impair the nutritive value of protein and calcium in milk. Futhermore, UHT-processing may improve the bioavailability of protein and calcium in milk.

  • PDF

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

Selection of Quality Indicator to Predict the Shelf-life of Milk (UHT, LTLT) during Distribution (시유(UHT, LTLT)의 유통 중 품질예측을 위한 품질지표 선정)

  • Kim, Ji-Young;Kim, Jong-Hoon;Kim, Byeong-Sam
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.37-42
    • /
    • 2011
  • The changes in pH, titratable acidity, chromaticity, total count, coliform group and organoleptic properties of the whole market milks (UHT, LTLT) that sold currently on the domestic market were stored after their production at 0, 10, 20, 30 and $40^{\circ}C$ to predict their quality during distribution, and examined prior to the analysis on the correlation of their quality properties and organoleptic preference level and discovery of optimal quality indicator. The investigation of correlation between pH, acidity and preference level of milks depending on respective storage temperature showed significant correlation (p<0.01) for the milk stored at 10, 20, 30 and $40^{\circ}C$, and the higher temperature was directly proportional to the higher correlation coefficient. The correlation between total count and preference level for LTLT milk stored at 0, 10, 20, 30 and $40^{\circ}C$ showed high correlation coefficient at every high temperature condition respectively as R=0.81, R=0.91, R=0.96, R=0.90 & R=0.99, and the correlation coefficients were also significant level for the UHT milk irrespective of their storage temperature except $0^{\circ}C$. Accordingly, the changes in total colonies turned out to be suitable to be the quality indicator for the quality prediction of the milk on the distribution.

  • PDF

Changes of Indicative Substances According to Heat Treatment of Milk (우유의 가열처리에 따른 지표물질의 변화)

  • 김경미;홍윤호;이용규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.390-397
    • /
    • 1992
  • This study was carried out to analyze the physicochemical properties of bovine milks, which were heated with LTLT, HTST, UHT pasteurization and UHT sterilization methods and to compare the heat intensity among the heating methods and samples. The mean HMF values per liter milk were measured as 0.66~1.62 $\mu$M (LTLT), 0.9~1.78$\mu$M (HTST), 3.53$\mu$M(UHT pasteurized) and 7.43~8.97$\mu$M (UHT sterilized) in samples, re- sportively. The available Iysine contents per 100ml milk showed 293.2 mg (Raw), 289.2~291.2 mg (LTLT), 298.4~292.4mg (HTST), 272.4~261.6mg (UHT pasteurized) and 279.0mg (UHT sterilized), respectively. The rates of whey protein denaturation were 9.5~11.4% (LTLT), 9.5~17.1% (HTST), 89.3~95% (UHT pas-tsterilized) and 62.7% (UHT sterilized), respectively. The contents of SH groups per g protein were determined as 2.86$\mu$M (Raw) and 2.95~3.15$\mu$M (LTLT), 3.08~3.18$\mu$M (HTST), 3.26~3.42$\mu$M (UHT Pasteurized) and 3. 36$\mu$M (UHT sterilized), respectively, The SS groups Contents per g protein were 28.93$\mu$M (Raw), 25.72~26. 51 $\mu$M (LTLT), 26.93~26.79$\mu$M (HTST), 23.65~23.04 $\mu$M (UHT pasteurized) and 24.69$\mu$M (UHT sterilized), respectively. The ascorbic acid contents per liter milk were measured 6.05mg (Raw), 1.47~1.65mg (LTLT), 2.50~3.85mg (HTST), 2.87~3.69mg (UHT pasteurized) and 4.50mg (UHT sterilized). The changes of some in-dices in milk samples depend on the heating temperature and time ; the HMF values, SH groups, whey protein denaturation rates increased, while the available lysine contents and SS groups decreased in LTLT, HTST, UHT pasteurized and UHT sterilized milks. No remarkable differences were found in heating indicators between LTLT and UHT milks.

  • PDF

Effect of Heat-Treat Methods on the Soluble Calcium Levels in the Commercial Milk Products

  • Yoo, Sung-Ho;Kang, Seung-Bum;Park, Jin-Ho;Lee, Kyung-Sang;Kim, Jin-Man;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.369-376
    • /
    • 2013
  • Milk is well known to be rich in some nutrients such as protein, calcium, phosphorus, and vitamins. In particular, absorption and bioavailability of calcium receive lots of attention because calcium is very little absorbed until it is changed to the ionized form in the intestine. In this study, concentration of the soluble calcium was determined in the commercial bovine milk products, which were processed by different heat-treatment methods for pasteurization. As for general constituents, lactose, fat, protein, and mineral were almost same in the liquid milk products by different processors. Ultrafiltration of the skimmed milk caused little change in the permeate as for lactose content but both fat and protein decreased. pH values ranges from 6.57-6.62 at room temperature and slightly increase after centrifugation, 10,000 g, 10 min. Rennet-coagulation activity was the lowest in the ultra high temperature (UHT-)milk compared to the low temperature long time (LTLT-) and high temperature short time (HTST-)milk products. Each bovine milk products contains 1056.5-1111.3 mg/kg of Ca. The content of sulfhydryl group was the lowest in raw milk compared to the commercial products tested. For the skimmed milks after ultrafiltration with a membrane (Mw cut-off, 3 Kd), soluble Ca in the raw milk was highest at 450.2 mg/kg, followed by LTLT-milk 336.4-345.1 mg/kg, HTST-milk 305.5-313.3 mg/kg, UHT-milk 370.3-380.2 mg/kg in the decreasing order. After secondary ultrafiltration with a membrane (Mw cut-off, 1 kD), total calcium in raw milk had a highest of 444.2 mg/kg, and those in the market milk products. As follow: UHT-milk, 371.3 to 378.2 mg/kg; LTLT-milk, 333.3 to 342.2 mg/kg; HTST-milk 301.9 to 311.2 mg/kg in a decreasing order.