• Title/Summary/Keyword: LTE-Femtocell

Search Result 32, Processing Time 0.017 seconds

Dynamic Reservation Scheme of Physical Cell Identity for 3GPP LTE Femtocell Systems

  • Lee, Poong-Up;Jeong, Jang-Keun;Saxena, Navrati;Shin, Ji-Tae
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.207-220
    • /
    • 2009
  • A large number of phone calls and data services will take place in indoor environments. In Long Term Evolution (LTE), femtocell, as a home base station for indoor coverage extension and wideband data service, has recently gained significant interests from operators and consumers. Since femtocell is frequently turned on and off by a personal owner, not by a network operator, one of the key issues is that femtocell should be identified autonomously without system information to support handover from macrocell to femtocell. In this paper, we propose a dynamic reservation scheme of Physical Cell Identities (PCI) for 3GPP LTE femtocell systems. There are several reserving types, and each type reserves a different number of PCIs for femtocell. The transition among the types depends on the deployed number of femtocells, or the number of PCI confusion events. Accordingly, flexible use of PCIs can decrease PCI confusion. This reduces searching time for femtocell, and it is helpful for the quick handover from macrocell to femtocell. Simulation results show that our proposed scheme reduces average delay for identifying detected cells, and increases network capacity within equal delay constraints.

Development of Femtocell Simulator Based on LTE Systems for Interference and Performance Evaluation (간섭 및 성능 분석을 위한 LTE 시스템 기반 펨토셀 시뮬레이터 개발)

  • Kim, Chang-Seup;Choi, Bum-Gon;Koo, Bon-Tae;Lee, Mi-Young;Chung, Min-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Recently, femtocell has been concerned as one of effective solutions to relieve shadow region and provide high quality services to users in indoor environments. Even though femtocell offers various benefits to cellular operators and users, many technical issues, such as interference coordination, network synchronization, self-configuration, self-optimization, and so on, should be solved to deploy the femtocell in current network. In this paper, we develop a simulator for evaluating performance of long term evolution (LTE) femtocell systems under various interference scenarios. The simulator consists of a main-module and five sub-modules. The main-module connects and manages five sub-modules which have the functionality managing user mobility, packet scheduling, call admission control, traffic generation, and modulation and coding scheme (MCS). To provide user convenience, the simulator adopts graphical user interface (GUI) which can observes simulation results in real time. We expect that this simulator can contribute to developing effective femtocell systems by supporting a tool for analyzing the effect of interference between macrocell and femtocell.

LTE Femtocell Network Configuration and an Off-Load Scheme According to Traffic Type within Smart Shipyard Area (스마트 조선소내 LTE 펨토셀 네트워크 구성과 트래픽 종류에 따른 오프로드 방식)

  • Kim, Su-Hyun;Jung, Min-A;Lee, Seong Ro;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.667-673
    • /
    • 2014
  • In a smart shipyard area, it is possible to integrate a variety of ship modules from separate sites into a final ship construction by using mobile applications. In this paper, we proposed the LTE femtocell network configuration which is applicable to sub shipyard, the traffic exchange method with shipyard headquarter and offload method to separate the general traffic. We defined the mode change in a femtocell gateway for supporting offload for general traffic between the main server in shipyard headquarter and sub shipyard, the offload data managements and message definition. We check the transmitted/received message flow in the wireless link, and consider the performance of the proposed method using state the transition diagram. It is expected that our results can improve the productivity within a smart shipyard by mobile communications and LTE femtocell network.

A 4-port MIMO Antenna for LTE Femtocell using Cross Decoupler (Cross Decoupler를 이용한 LTE 펨토셀용 4-port MIMO 안테나)

  • Ahn, Sang-Kwon;Jeong, Gye-Taek;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • This paper describes the design, fabrication, and measurement of a 4-port femtocell MIMO antenna for LTE 700MHz(Band12, 13, 14, 17, 28, 44) applications. Based on microstrip patch antenna, an impedance matching is achieved by short pin. In order to obtain sufficient bandwidth and isolation between antenna elements in a limited dimension, a cross decoupler is used. With a Voltage Standing Wave Ratio (VSWR)${\leq}2$, the measured result of the fabricated antenna provides 105MHz(0.698~0.803MHZ) bandwidth and shows the gain with 1.97dBi and isolation above 13dB. As one of the key parameters for MIMO performance evaluation, correlation coefficient of MIMO is achieved within 0.2.

A Novel Cell Selection Technique Based on Game Theory for Femtocell System Resource Optimization (펨토셀시스템 자원 최적화를 위한 게임이론 기반 기지국 선택 기법)

  • Jang, Jeong-Gyu;Sohn, Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.652-659
    • /
    • 2014
  • In this paper, we propose an access point selection method for mobile users in LTE-femtocell system. In wireless communication system, users want to receive good data service. In LTE-femtocell system, if users move a little, users can experience different data service. The proposed access point selection method help that if users move a little, users obtain the high capacity and that user selects access point that other user have not selected much and so obtains higher data service. We simulated in order to prove performance of the proposed access point selection metod. Simulation results show that in a situation that users are concentrated in order to obtain better data service users are seen scattered look. As a result, we confirm that the proposed access point selection method provides good data service to users.

Adaptive Power Control Schemes for Interference Mitigation in LTE Femtocell Networks (LTE 기반 펨토셀 네트워크에서 간섭 완화를 위한 적응적 전력 제어 기법)

  • Lee, Sang-Joon;Kim, Seung-Yeon;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.648-660
    • /
    • 2012
  • The low-power, low-cost femtocell network has been proposed not only to alleviate traffic load to the macro base station (eNB) but also to cover the indoor coverage hole problem. However, in the dense femtocell environment where many femtocells are deployed to cover the whole large office building, performance of such femtocell environment can be deteriorated due to severe co-channel interference problem between the eNB and femtocells and among neighboring femtocells. In particular, a macro UE(mUE) located within femtocell coverage may experience severe co-channel interference from surrounding femtocells. Therefore, In this paper, we propose a novel power control schemes to mitigate interference to a mUE under such dense LTE femtocell environment. With proposed femtocell power control schemes, performance of the mUE can be greatly improved in terms of the outage probability and the SINR while maintaining satisfying femtocell performance. Simulation based performance study shows that the proposed power control scheme is able to enhance mUE performance more than 30% than the conventional dense femtocell in terms of the two performance metrics.

Fractional Frequency Reuse (FFR) Usability Improvement in LTE Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.292-298
    • /
    • 2022
  • Femtocell networks can be a potential method for increasing the capacity of LTE networks, especially in indoor areas. However, unplanned deployment of femtocells results in co-tier interference and cross-tier interference problems. The interference reduces the advantages of implementing femtocell networks to a certain extent. The notion of Fractional Frequency Reuse (FFR) is proposed in order to reduce the impact of interference on the system's performance. In this paper, a dynamic approach for efficiently partitioning the spectrum is suggested. The goal is to enhance the capacity of femtocells, which will improve the performance of the system. The suggested strategy allocates less resources to the macrocell portion of the network, which has a greater number of femtocells deployed to maximize the utilization of available resources for femtocell users. The spectrum division would be dynamic. The proposed strategy is evaluated through a simulation using MATLAB tool. In conclusion, the results showed that the proposed scheme has the potential to boost the system's capacity.

Optimal Resource Allocation Scheme according to Access Mode in LTE Femtocell Systems (LTE 기반의 펨토셀 시스템에서 접근 모드에 따른 최적의 자원 할당 방식)

  • Lee, In-Sun;Park, Min-Ho;Kim, Dong-Ki;Hwang, Jae-Ho;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • In Femtocell that provides high quality of indoor communications with low transmitted power, there are two typical Access modes; Closed Access mode and Open Access mode. In this paper, we propose resource allocation scheme, which mitigates difference of performance between Access modes and improves overall cell performance, according to Access mode. We give more wireless resources to Open Access mode Femtocell, which improves performance of other users, than Closed Access mode Femtocell. If Open Access mode Femtocell uses more resource, there is trade-off between improvement of user using Open Access mode Femtocell and increase of interference that other users receive. So, we solve the optimal value for resource allocation and analyze performance of conventional scheme and proposed scheme applying the optimal value. Eventually, proposed scheme can improve overall cell performance relative to conventional scheme.

QoS Priority Based Femtocell User Power Control for Interference Mitigation in 3GPP LTE-A HetNet

  • Ahmad, Ishtiaq;Kaleem, Zeeshan;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.61-74
    • /
    • 2014
  • In recent years, development of femtocells are receiving considerable attention towards increasing the network coverage, capacity, and improvement in the quality of service for users. In 3GPP LTE-Advanced (LTE-A) system, to efficiently utilize the bandwidth, femtocell and macro cell uses the same frequency band, but this deployment poses a technical challenge of cross-tier interference to macro users. In this paper, the novel quality of service based fractional power control (QoS-FPC) scheme under the heterogeneous networks environment is proposed, which considers the users priority and QoS-requirements during the power allocation. The proposed QoS-FPC scheme has two focal points: firs, it protects the macrocell users uplink communication by limiting the cross-tier interference at eNB below a given threshold, and second, it ensures the optimization of femtocell users power allocation at each power adjustment phase. Performance gain is demonstrated with extensive system-level simulations to show that the proposed QoS-FPC scheme significantly decreases the cross-tier intereference and improves the overall users throughput.

Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.508-522
    • /
    • 2011
  • Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions.