• Title/Summary/Keyword: LTE Throughput

Search Result 109, Processing Time 0.019 seconds

Analysis of Call Admission Control for Joint Transmission-Based LTE-Advanced Systems (Joint Transmission 기반의 LTE-Advanced 시스템에 대한 호 수락 제어의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Yoo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.535-542
    • /
    • 2013
  • Coordinated multi-point transmission (CoMP) is considered to be a promising technique to improve the throughput for LTE-Advanced systems. One important approach for CoMP is Joint Transmission (JT). However, the analytical model of JT has not been fully studied, as user equipments (UEs) receiving the desired signals from an adjacent base station (BS) as well as serving BS, or only serving BS were not distinguished. We derive a new analytical model to describe the call admission control in JT based systems. The performance measures of interest are the call blocking probability, and resource utilization. Furthermore, we compare the performance of JT-based systems and non-JT- based systems. The analytical results are in reasonable agreement with the simulation results.

Efficient Implementation of a Pseudorandom Sequence Generator for High-Speed Data Communications

  • Hwang, Soo-Yun;Park, Gi-Yoon;Kim, Dae-Ho;Jhang, Kyoung-Son
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.222-229
    • /
    • 2010
  • A conventional pseudorandom sequence generator creates only 1 bit of data per clock cycle. Therefore, it may cause a delay in data communications. In this paper, we propose an efficient implementation method for a pseudorandom sequence generator with parallel outputs. By virtue of the simple matrix multiplications, we derive a well-organized recursive formula and realize a pseudorandom sequence generator with multiple outputs. Experimental results show that, although the total area of the proposed scheme is 3% to 13% larger than that of the existing scheme, our parallel architecture improves the throughput by 2, 4, and 6 times compared with the existing scheme based on a single output. In addition, we apply our approach to a $2{\times}2$ multiple input/multiple output (MIMO) detector targeting the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) system. Therefore, the throughput of the MIMO detector is significantly enhanced by parallel processing of data communications.

Radio Resource Scheduling Approach For Femtocell Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • The radio resources available in a wireless network system are limited. Therefor, job of managing resources is not easy task. Because the resources are shared among the UEs that are connected, the process of assigning resources must be carefully controlled. The packet scheduler in an LTE network is in charge of allocating resources to the user equipment (UE). Femtocells networks are being considered as a promising solution for poor channel performance for mulitple environments. The implementation of femtocells into a macrocell (traditional base station) would boost the capacities of the cellular network. To increase femtocells network capacity, a reliable Packet Scheduler mechanism should be implemented. The Packet Scheduler technique is introduced in this paper to maximize capacity of the network while maintaining fairness among UEs. The proposed solution operates in a manner consistent with this principle. An analysis of the proposed scheme's performance is conducted using a computer simulation. The results reveal that it outperforms the well-known PF scheduler in terms of cell throughput and average throughput of UEs.

Adaptive Periodic MLB Algorithm for LTE Femtocell Networks (LTE 펨토셀 네트워크를 위한 적응적 주기의 MLB 알고리즘)

  • Kim, Woojoong;Lee, Jeong-Yoon;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.764-774
    • /
    • 2013
  • The number of users and data packets has increased in 4G cellular networks. Therefore, 4G cellular network providers suffer from the network capacity problem. In order to solve this problem, femtocell concept is suggested. It can reduce the coverage hole and enhance the QoS. However, only small number of femtocells experience the large amount of loads. To solve this problem, Mobility Load Balancing (MLB) algorithm is suggested, which is a kind of load balancing algorithm. To distribute the traffic load, MLB algorithm modifies the handover region. If the handover region is reduced by MLB algorithm, some cell edge users are compulsively handed over to neighbor femtocell. In this paper, we analyze the relation between MLB performing period and performance indicators. For example throughput and blocking probability is reduced, if period is decreased. On the contrast, if period is increased, the number of handover frequency is decreased. Using this relation, we suggest the adaptive periodic MLB algorithm. This algorithm includes the advantage of both long period and short period MLB algorithm, such as high throughput, the small number of handover frequency, and low blocking probability.

A Novel Resource Scheduling Scheme for CoMP Systems

  • Zhou, Wen'an;Liu, Jianlong;Zhang, Yiyu;Yang, Chengyi;Yang, Xuhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.650-669
    • /
    • 2017
  • Coordinated multiple points transmission and reception (CoMP) technology is used to mitigate the inter-cell interference, and increase cell average user normalized throughput and cell edge user normalized throughput. There are two kinds of radio resource schedule strategies in LTE-A/5G CoMP system, and they are called centralized scheduling strategy and distributed scheduling strategy. The regional centralized scheduling cannot solve interference of inter-region, and the distributed scheduling leads to worse efficiency in the utilize of resources. In this paper, a novel distributed scheduling scheme named 9-Cell alternate authorization (9-CAA) is proposed. In our scheme, time-domain resources are divided orthogonally by coloring theory for inter-region cooperation in 9-Cell scenario [6]. Then, we provide a formula based on 0-1 integer programming to get chromatic number in 9-CAA. Moreover, a feasible optimal chromatic number search algorithm named CNS-9CAA is proposed. In addition, this scheme is expanded to 3-Cell scenario, and name it 3-Cell alternate authorization (3-CAA). At last, simulation results indicate that 9/3-CAA scheme exceed All CU CoMP, 9/3C CU CoMP and DLC resource scheduling scheme in cell average user normalized throughput. Especially, compared with the non-CoMP scheme as a benchmark, the 9-CAA and 3-CAA have improved the edge user normalized throughput by 17.2% and 13.0% respectively.

Adjacent Channel Coexistence of LTE in Unlicensed Spectrum (비면허 대역 LTE 시스템의 인접 대역 간섭 분석)

  • Lim, Su Hwan;Jung, Man Young;Lee, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1879-1888
    • /
    • 2015
  • This paper evaluates the adjacent channel coexistence issues between LAA(License Assisted Access) system and other system (e.g. Wi-Fi) system in 5 GHz unlicensed spectrum. LAA is a technology to achieve enhanced data rate by aggregating licensed and unlicensed spectrum using CA(Carrier Aggregation). The coexistence study is essential before deploying LTE in unlicensed spectrum to verify the impact of LTE on the existing system such as Wi-Fi including system in throughput and regulatory aspects. This paper evaluates and analyzes the RF requirements of LTE system using interference analysis of coexistence study when operating at adjacent frequency channel of the Wi-Fi system in order to minimize the impact of LTE system into Wi-Fi system.

Performance Analysis of Antenna Polarization Diversity on LTE 2×2 MIMO in Indoor Environment (실내 환경에서 LTE 2×2 MIMO 기술의 안테나 편파 다이버서티 성능 분석)

  • Nguyen, Duc T.;Devi, Ningombam Devarani;Shin, Seokjoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.1
    • /
    • pp.7-21
    • /
    • 2017
  • Multiple antenna techniques employed in fourth generation mobile communication systems are affected on their performance mostly by transmission environments and antenna configurations. The performance of the indoor LTE(Long-term Evolution) MIMO(multiple input multiple output) has been rigorously evaluated with considering various diversity transmission schemes and propagation conditions in the paper. Specifically, MAC TP(medium access control throughput) and LTE system parameters related to the MIMO technique are analyzed for several indoor propagation conditions. The performance comparison between multiple antenna diversity mode and single antenna mode has been derived as well. The results performed in the paper give the guideline on antenna configurations of polarization diversity in LTE 2×2 MIMO for various indoor channel environments, and possibly are exploited by network operators and antenna manufacturers.

Design and Analysis of Intelligent AMC Scheme with Relay Protocols in LTE-Advanced System (LTE-Advanced 시스템에서 릴레이 프로토콜을 적용한 지능형 AMC 기법의 설계 및 분석)

  • Malik, Saransh;Kim, Bora;Moon, Sangmi;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.10-19
    • /
    • 2012
  • In this paper, we propose an Adaptive Modulation and Coding (AMC) scheme using relay protocols generally known as Relay Node (RN). The AMC scheme is used for improving the throughput and a reliability of a communication system, because of the nature of different modulation and coding schemes. We analyze the performance of relay protocols with the AMC scheme and observed that relay protocols with the AMC scheme is capable of providing better average throughput at a lower Signal to Noise Ratio (SNR) level as compared to the conventional scheme with no AMC. We perform Monte Carlo simulations with Long Term Evolution-Advanced (LTE-A) parameters to prove the performance comparison of adaptive Modulation and Coding Scheme (MCS) relay protocols with the non-adaptive MCS relay protocols. The simulation results of the proposed system with adaptive MCS prove that among the Amplify-and-Forward (AF), Decode-and-Forward (DF) and DeModulate-and-Forward (DMF), the DMF protocol performs best at a lower SNR value and also provides better average throughput.

Design and Implementation of a QoS-Based Scheduling Algorithm Based on the LTE QCI Specifications

  • Ramneek, Ramneek;Choi, Wonjun;Seok, Woojin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.227-230
    • /
    • 2014
  • LTE 3GPP standard defines several QCI (QoS Class Identifier) classes to provide differential QoS, depending on the requirements of different user applications.These QCI values have been characterized in terms of priority, packet loss and delay budget. In spite of the availability of this robust QoS framework in LTE, there is no such scheduling algorithm that has its working principle based on this framework. The responsibility of fulfilling the user requirements, while satisfying the service class requirements is left upon the cellular service provider and it is an open issue at present. To solve this problem, we have proposed a MAC scheduler, which defines the priority of different users based on their bearer specification and provides desired QoS in terms of the achieved throughput through the resource block allocation based on calculated user priority.

Novel Uplink Congestion Control Method for TCP Throughput Enhancement (TCP 성능 향상을 위한 새로운 상향링크 혼잡 제어 기법)

  • Sohn, Kyungho;Kim, Han-Seok;Kwak, Dongho;Roy, Abhishek;Kim, Dongsook;Kim, Young Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.153-156
    • /
    • 2017
  • In this paper, we propose a novel uplink congestion control scheme, which enhances downlink TCP throughput by improving response time of TCP acknowledgements without TCP modification. Through the experimental results, it is manifested that the proposed scheme is able to achieve better downlink TCP throughput.