• Title/Summary/Keyword: LTD engine

Search Result 465, Processing Time 0.024 seconds

Analysis of fan clutch characteristics for electronic engine cooling control system (전자식 엔진냉각제어 시스템을 위한 팬 클러치 특성 분석)

  • Ryu, Hye-Yeon;Kim, Hyun-Hee;Jeong, Sung-Min;Koh, Young-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.241-246
    • /
    • 2018
  • The engine cooling system is a device that keeps the temperature of the engine room at a proper level by driving the cooling fan when the engine room temperature that occurs during driving is above a certain temperature. Recently, the vehicle cooling system has been changed to electronic system. Therefore, in this paper, we will analyze the clutch operation characteristics for designing a superior electronic fan clutch. For this purpose, an electronic fan clutch was designed and a test bed for performance evaluation was constructed and analyzed.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel (경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구)

  • Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine (디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구)

  • Kim, GiBok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller (동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어)

  • Seong, Hyemin;Kim, Kisun;Joo, Wonho;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF

The Simultaneous removal of NOx using Wet Scrubber (습식 스크러버를 이용한 NOx 제거에 관한 연구)

  • Kim, Jae-Gang;Lee, Ju-Yeol;Park, Byung Hyun;Choi, Jin-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.296-301
    • /
    • 2015
  • The experiment was performed for in order to remove NOx which is generated in the Ship's engine. it was performed test in order to remove NOx which is generated in the Ship's engine. It was used as the oxidizing agent sodium chlorite. Use the oxidizer is nitrogen monoxide was oxidized to nitrogen dioxide. and was tested pH adjustment to increase the efficiency of oxidizing. An aqueous solution of sodium hydroxide was used for the nitrogen dioxide absorbent. Low concentration of the solution, it showed a high efficiency. improves the absorption efficiency by add additives.

Development of the E/R Insulation Modeling Automation System Using Structural Hull Model Information (선체 구조 모델 정보를 활용한 E/R Insulation 모델링 자동화 시스템 구축)

  • Park, Hoe-Yeon;Kang, Hyun-Gu;Park, Nam-Soo;Lee, Man-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.112-117
    • /
    • 2008
  • The Insulation, which is consist of the glass wool, mineral wool or perforated SUS plate, installed on the wall or under ceiling for the protecting heat and the blocking the noise of engine room area. In our shipyard, designing the structure model of insulation is hard and difficult, Because designed the insulation model is considered of any factors which are hull model properties of panel shape, direction and thickness and service of area. In this paper, We issue the way to utilize shape and direction of the hull model information and specific character of working space in engine room.

  • PDF

A Study on Fp Z/8 of Anti-Backlash Gear in an Engine (엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구)

  • Zhong, Xing;Lv, Jianhua;Lu, Hao;Zhou, Rui;Guo, Jianyu;Kai, Lang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.