• 제목/요약/키워드: LSTM-RNN

검색결과 208건 처리시간 0.029초

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

다중센서를 활용한 LSTM 기반 재실자 행동 분류 모델 개발 (Using multi-sensor for Development of Multiple Occupants' Activities Classification Model Based on LSTM)

  • 박진수;양철승;김경호
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.1065-1071
    • /
    • 2023
  • 본 논문에서는 주거지 내의 재실자의 행동을 분류하기 위한 LSTM 모델을 개발하는 연구에 대해 다룬다. 다중센서의 구성은 실내 공기질을 측정하는 IAQ(Indoor air quality) 센서, 재실감지 및 위치를 추적하는 UWB 레이더, 재실자의 생체정보를 측정하기 위한 Piezo 센서로 구성되며 실제 주거환경과 유사한 실험환경을 구축하여 외출, 재실, 요리, 청소, 운동, 수면 등의 재실자 행동 데이터를 수집한다. 수집한 데이터를 이상치와 결측치를 전처리 후 LSTM 모델을 사용하여 재실자 행동 분류 모델의 정확도, 민감도, 특이도, 그리고 T1스코어를 계산 후 평가한다.

진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구 (Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System)

  • 김현수;박광섭
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구 (A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data)

  • 정세훈;김종찬;김치용;유강수;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제21권7호
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

CTC를 적용한 CRNN 기반 한국어 음소인식 모델 연구 (CRNN-Based Korean Phoneme Recognition Model with CTC Algorithm)

  • 홍윤석;기경서;권가진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.115-122
    • /
    • 2019
  • 지금까지의 한국어 음소 인식에는 은닉 마르코프-가우시안 믹스쳐 모델(HMM-GMM)이나 인공신경망-HMM을 결합한 하이브리드 시스템이 주로 사용되어 왔다. 하지만 이 방법은 성능 개선 여지가 적으며, 전문가에 의해 제작된 강제정렬(force-alignment) 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 이 모델의 문제로 인해 타 언어를 대상으로 한 음소 인식 연구에서는 이 단점을 보완하기 위해 순환 신경망(RNN) 계열 구조와 Connectionist Temporal Classification(CTC) 알고리즘을 결합한 신경망 기반 음소 인식 모델이 연구된 바 있다. 그러나 RNN 계열 모델을 학습시키기 위해 많은 음성 말뭉치가 필요하고 구조가 복잡해질 경우 학습이 까다로워, 정제된 말뭉치가 부족하고 기반 연구가 비교적 부족한 한국어의 경우 사용에 제약이 있었다. 이에 본 연구는 강제정렬이 불필요한 CTC 알고리즘을 도입하되, RNN에 비해 더 학습 속도가 빠르고 더 적은 말뭉치로도 학습이 가능한 합성곱 신경망(CNN)을 기반으로 한국어 음소 인식 모델을 구축하여 보고자 시도하였다. 총 2가지의 비교 실험을 통해 본 연구에서는 한국어에 존재하는 49가지의 음소를 판별하는 음소 인식기 모델을 제작하였으며, 실험 결과 최종적으로 선정된 음소 인식 모델은 CNN과 3층의 Bidirectional LSTM을 결합한 구조로, 이 모델의 최종 PER(Phoneme Error Rate)은 3.26으로 나타났다. 이는 한국어 음소 인식 분야에서 보고된 기존 선행 연구들의 PER인 10~12와 비교하면 상당한 성능 향상이라고 할 수 있다.

순서 정보 기반 악성코드 분류 가능성 (Malware Classification Possibility based on Sequence Information)

  • 윤태욱;박찬수;황태규;김성권
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1125-1129
    • /
    • 2017
  • LSTM(Long Short-term Memory)은 이전 상태의 정보를 기억하여 현재 상태에 반영해 학습하는 순환신경망(Recurrent Neural Network) 모델이다. 악성코드에서 선형적 순서 정보는 각 시점에서 호출되는 함수로서 정의 가능하다. 본 논문에서는 LSTM 모델의 이전 상태를 기억하는 특성을 이용하며, 시간 순서에 따른 악성코드의 함수 호출 정보를 입력으로 사용한다. 그리고 실험으로서 우리가 제시한 방법이 악성코드 분류가 가능함을 보이고 순서 정보의 길이 변화에 따른 정확률을 측정한다.

기계학습 기반의 Long Short-Term Memory 네트워크를 활용한 수문인자 예측기술 개발 (Development of Hydrological Variables Forecast Technology Using Machine Learning based Long Short-Term Memory Network)

  • 김태정;정민규;황규남;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.340-340
    • /
    • 2019
  • 지구온난화로 유발되는 기후변동성이 증가함에 따라서 정확한 수문인자의 예측은 전 세계적으로 주요 관심사항이 되고 있다. 최근에는 고성능 컴퓨터 자원의 증가로 수문기상학 연구에서 동일한 학습량에 비하여 정확도의 향상이 뚜렷한 기계학습 구조를 활용하여 위성영상 기반의 대기예측, 태풍위치 추적 및 강수량 예측 등의 연구가 활발하게 진행되고 있다. 본 연구에는 기계학습 중 시계열 분석에 널리 활용되고 있는 순환신경망(Recurrent Neural Network, RNN) 기법의 대표적인 LSTM(Long Short-Term Memory) 네트워크를 이용하여 수문인자를 예측하였다. LSTM 네트워크는 가중치 및 메모리 요소에 대한 추가정보를 셀 상태에 저장하고 시계열의 길이 조정하여 모형의 탄력적 활용이 가능하다. LSTM 네트워크를 이용한 다양한 수문인자 예측결과 RMSE의 개선을 확인하였다. 따라서 본 연구를 통하여 개발된 기계학습을 통한 수문인자 예측기술은 권역별 수계별 홍수 및 가뭄대응 계획을 능동적으로 수립하는데 활용될 것으로 판단된다. 향후 연구에서는 LSTM의 입력영역을 Bayesian 추론기법을 활용하여 구성함으로 학습과정의 불확실성을 정량적으로 제어하고자 한다.

  • PDF

강우유출 분석을 위한 수문 모형과 딥러닝 기법의 비교 분석 (Comparison of hydrologic models and deep learning techniques for rainfall-runoff analysis)

  • 김진혁;김초롱;김충수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.295-295
    • /
    • 2021
  • 수자원 관리 및 계획 수립에 있어 강우 유출 분석은 가장 중요하며, 기본적인 분석이다. 기존의 강우 유출 분석은 일반적으로 수문 모형을 이용한다. 강우 유출 분석은 강수와 증발산 과정, 즉 물순환에 있어 복잡한 상호 작용을 고려해야한다. 본 연구에서는 기존의 수문 모형과 데이터간의 관계를 포착할 수 있는 딥러닝 기법을 이용한 강우 유출분석 수행하였다. 우리나라의 유역 중, 비교적 풍부한 수문데이터를 보유하고 있는 IHP (International Hydrological Program)의 청미천 유역을 연구대상지역으로 연구를 수행하였다. 수문 모형으로는 SWAT (Soil and Water Assessment Tool)을 이용하였으며, 딥러닝 기법은 시계열 분석에 있어 주로 사용되는 RNN(Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크를 이용하였다. 분석결과 수문 모형의 성능 지표인 상관계수와 NSE (Nash-Sutcliffe Efficiency)는 LSTM 네트워크에서 더 높은 성능을 확인 할 수 있었다. 일반적으로 LSTM 네트워크는 보정 기간이 길수록 더욱 좋은 성능을 나타낸다. 즉, 과거 수문데이터가 충분히 확보된 유역에서 LSTM 네트워크와 같은 데이터 기반 모델은 다양한 지형 및 기상데이터를 필요하는 수문 모델보다 유용할 것이라 사료된다.

  • PDF

LSTM을 이용한 탄천에서의 시간별 하천수위 모의 (Hourly Water Level Simulation in Tancheon River Using an LSTM)

  • 박창언
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

STT로 생성된 자막의 자동 문장 분할 (Automatic sentence segmentation of subtitles generated by STT)

  • 김기현;김홍기;오병두;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.559-560
    • /
    • 2018
  • 순환 신경망(RNN) 기반의 Long Short-Term Memory(LSTM)는 자연어처리 분야에서 우수한 성능을 보이는 모델이다. 음성을 문자로 변환해주는 Speech to Text (STT)를 이용해 자막을 생성하고, 생성된 자막을 다른 언어로 동시에 번역을 해주는 서비스가 활발히 진행되고 있다. STT를 사용하여 자막을 추출하는 경우에는 마침표가 없이 전부 연결된 문장이 생성되기 때문에 정확한 번역이 불가능하다. 본 논문에서는 영어자막의 자동 번역 시, 정확도를 높이기 위해 텍스트를 문장으로 분할하여 마침표를 생성해주는 방법을 제안한다. 이 때, LSTM을 이용하여 데이터를 학습시킨 후 테스트한 결과 62.3%의 정확도로 마침표의 위치를 예측했다.

  • PDF